Кафедра высшей нервной деятельности. Нейробиологии Курсы или обучение дистанционно по нейробиологии

Нейробиология изучает нервную систему человека и животных, рассматривая вопросы устройства, функционирования, развития, физиологии, патологии нервной системы и мозга. Нейробиология – очень широкая научная область, охватывающая многие направления, например, нейрофизиологию, нейрохимию, нейрогенетику. Нейробиология тесно соприкасается с когнитивными науками, психологией, и оказывает все большее влияние при исследовании социо-психологических явлений.

Изучение нервной системы в целом и мозга в частности может проходить на молекулярном или клеточном уровне, когда исследуется строение и функционирование отдельных нейронов, на уровне отдельных скоплений нейронов, а также на уровне отдельных систем (кора головного мозга, гипоталамус и т.д.) и всей нервной системы в целом, включая и головной мозг, и спинной, и всю сеть нейронов в организме человека.

Ученые-нейробиологи могут решать совершенно разные задачи и отвечать, порой, на самые неожиданные вопросы. Как восстановить работу мозга после перенесенного инсульта и какие клетки в ткани мозга человека оказывали влияние на его эволюцию – все эти вопросы в компетенции нейробиологов. А еще: почему кофе бодрит, почему мы видим сны и можно ли управлять ими, как гены определяют наш характер и строение психики, как работа нервной системы человека влияет на восприятие вкусов и запахов, и многие-многие другие.

Одним из перспективных направлений исследований в нейробиологии сегодня является изучение связи сознания и действия, то есть, как мысль о совершении действия приводит к его совершению. Эти разработки являются базой для создания принципиально новых технологий, о которых мы сейчас в принципе не догадываемся или таких, которые начинают усиленно развиваться. Примером таковых можно назвать создание чувствительных протезов конечностей, которые могут полностью восстановить функционал потерянной конечности.

По оценкам экспертов, помимо решения «серьезных» задач разработки нейробиологов скоро могут быть использованы в развлекательных целях, например, в индустрии компьютерных игр, чтобы сделать их еще более реалистичными для игрока, при создании специальных спортивных экзоскелетов, а также в военной промышленности.

Тем для изучения в нейробиологии, несмотря на множество исследований в этой области и повышенный интерес со стороны научного сообщества, меньше не становится. Поэтому еще нескольким поколениям ученых предстоит разгадывать загадки, которые таит в себе человеческий мозг и нервная система.

Нейробиолог – это ученый, который работает в одной из областей нейробиологии. Он может заниматься фундаментальной наукой, то есть проводить исследования, наблюдения и эксперименты, формируя новые теоретические подходы, находя новые общие закономерности, которые могут объяснить происхождение частных случаев. В этом случае ученый интересуется общими вопросами о строении мозга, особенностях взаимодействия нейронов, изучает причины возникновения неврологических заболеваний и т.д.

С другой стороны ученый может посвятить себя практике, решая, как применить известные фундаментальные знания для решения конкретных задач, например, при лечении заболеваний, связанных с нарушениями работы нервной системы.

Ежедневно специалисты сталкиваются с решением следующих вопросов:

1. как работает мозг и нейронные сети на разных уровнях взаимодействия, от клеточного до системного уровней;

2. как можно достоверно измерить реакции мозга;

3. какие связи, функциональные, анатомические и генетические, можно проследить в работе нейронов на разных уровнях взаимодействия;

4. какие из показателей работы мозга можно считать диагностическими или прогностическими в медицине;

5. какие лекарственные средства надо разрабатывать для лечения и протекции патологических состояний и нейродегенеративных заболеваний нервной системы.

Направление подготовки: —

Биология

Магистерская программа: —

Нейробиология

Квалификация выпускника: —

магистр биологии

Вступительные испытания: —

Биология (собеседование), биология на иностранном языке (собеседование)

Магистратура «Нейробиология» представляет собой уникальную образовательную программу (15 бюджетных и 5 внебюджетных мест), направленную на подготовку кадров высшей квалификации — специалистов, способных к проведению фундаментальных и прикладных исследований в области нейробиологии, например, исследованиях способностей, внимания и восприятия, нейромаркетинга, нейродефектологии, подбора кадров и профориентации, биомедицинских технологий. — Программа разработана в сотрудничестве с ведущими специалистами Института высшей нервной деятельности и нейрофизиологии РАН (ИВНД и НФ РАН). —

Срок действия государственной аккредитации: до 25.04.2016 г.

План приема на 2015 год: бюджет — 15 мест, внебюджет.
Стоимость обучения: 201 600 руб. в год.

Теоретическая подготовка в области нейробиологии осуществляется ведущими научными сотрудниками — ИВНД и НФ РАН, кафедры высшей нервной деятельности МГУ им. М.В. Ломоносова, Отдела исследований мозга ФГБУ «Научного центра неврологии» РАМН (ФГБУ «НЦН» РАМН). Обучение практическим навыкам и инструментальным методикам будет проводиться на базе Института нейронаук и когнитивных исследований МГГУ им. М.А. Шолохова (ИНИКИ), а также в лабораториях ИВНД и НФ РАН, ФГБУ «НЦН» РАМН, НИИ нейрохирургии им. Бурденко и других ведущих научных центрах. —

Образовательная программа «Нейробиология» тесно связана с двумя другими магистратурами МГГУ им. М.А. Шолохова: магистратура «Инструментальная психодиагностика» — (руководитель проф., д.псих.н. Огнев А.С.), посвященная инструментальным методам диагностики и оценке достоверности информации, и магистратура «Нейродефектология» (проф., д.пед.н. Орлова О.С.), посвященная особенностям — обучения детей с ограниченными возможностей здоровья.

Три причины поступить в магистратуру «Нейробиология» МГГУ им. М.А. Шолохова:

  • Сочетание фундаментальной теоретической подготовки по нейробиологии и прикладных навыков, владение передовыми инструментальными биохимическими, молекулярно-генетическими и психофизиологическими методами.
  • С самого начала обучения студенты принимают участие в — исследовательских проектах в таких областях, как психодиагностика, менеджмент, управление кадрами, обеспечение безопасности и нейромаркетинг. Возможно — участие в зарубежных стажировках, в грантах РНФ, РФФИ и РГНФ, а также в федеральных целевых программах Минобрнауки РФ. Все исследования выполняются в лабораториях, отлично — оснащенных высокотехнологичным оборудованием (52-канальные электроэнцефалографы, полиграфы Axcititon , айтрекер SMI ).
  • Наша магистратура дает все возможности студентам заработать себе за два года отличный послужной список: сформировать себе портфолио, стать соавторами в научных статьях в российских и международных высокорейтинговых журналах, принять участие в грантах и международных конференциях.

Семестр 1

Семестр 2

Семестр 3

Семестр 4

Иностранный язык для спец. целей

Специальные методы исследования

Количественные методы анализа

Экспериментальная нейробиология

Оформление и презентация исследовательской деятельности

Генетика поведения

Дифференциальная психология и психодиагностика

Нейроанатомия и функциональная нейроморфология —

Актуальные вопросы современной нейробиологии

Эволюционная биология

Философия науки

Молекулярная биология

Основы психофармакологии

Нейромаркетинг

Нейрофизиология и высшая нервная деятельность

Нейрохимия

Клиническая психология и психиатрия

Клиническая нейробиология и функциональная диагностика

Методология исследовательской деятельности

Трекинг глаз в когнитивных исследованиях

Электроэнцефалография

курс по выбору

НАУЧНАЯ БАЗА МАГИСТРАТУРЫ

В ходе обучения и при подготовке магистерских диссертаций все учащиеся магистратуры «Нейробиология» будут принимать участие в научно-исследовательских проектах Института нейронаук и когнитивных исследований МГГУ им. М.А. Шолохова (ИНКИ). Институт включает в себя четыре лаборатории (лаборатория социогеномики, лаборатория нейробиологии внимания и восприятия, лаборатория нейродефектологии и лаборатория оценки достоверности информации) и оснащен современным высокотехнологичным оборудованием (айтрекер SMI, 52-канальные энцефалографы, полиграфы Axciton, комплекс для биохимических и молекулярно-генетических исследований).

Подробно со структурой ИНКИ и направлениями наших исследований можно ознакомиться на веб-сейте института: —

Мастер-классы, встречи

· — — — — — — Балабан Павел Милославович, проф., д.б.н., чл.-корр. РАН, директор ИВНД и НФ РАН. «Нейроэтология и биологические основы поведения»

· — — — — — — Зорина Зоя Александровна, проф., д.б.н., выдающийся российский этолог, заведующая лабораторией физиологии и генетики поведения Кафедры ВНД биологического факультета МГУ, член бюро рабочей группы по изучению врановых птиц. «Поведение и высшие психические функции как результат эволюции»

· — — — — — — Строганова Татьяна Александровна, проф., д.б.н., ведущий российский психофизиолог, руководитель единственного в России центра магнитоэнцефалографии при МГППУ. «Нейробиологические основы аутизма»

ВЫПУСКНИК

Диплом: -магистр биологии, магистерская программа «Нейробиология»

Сертификаты: Специалист по количественным методам анализа ЭЭГ- специалист по оценке информационного контента с помощью айтрекера- специалист — по нейромаркетингу

Компетенции выпускника

· — — — — — — Понимание биологических основ высших психических функций, индивидуальных характеристик и способностей человека

· — — — — — — Знакомство с широким кругом методов нейрокогнитивных исследований (электроэнцефалография, трекинг глаз, биохимические, генетические, молекулярно-биологические, нейропсихологические и психометрические методы)

· — — — — — — Практическое владение совокупностью инструментальных методов в выбранной области специализации

· — — — — — — Навыки составления аналитических обзоров, планирования и организации экспериментально-психологических и нейробиологических исследований, подготовки заявок на гранты в области нейробиологии

НАШИ ПАРТНЕРЫ

· — — — — — — ИВНД и НФ РАН

· — — — — — — МГУ им. М.В. Ломоносова (кафедра ВНД, кафедра психофизиологии, кафедра эволюционной биологии)

· — — — — — — ФГБУ «Научный центр неврологии»

· — — — — — — Московский НИИ психиатрии

· — — — — — — НИИ нейрохирургии им. Бурденко

· — — — — — — Центр патологии речи и нейрореабилитации

· — — — — — — ФГУ НКЦО (Научно-клинический центр отоларингологии)

· — — — — — — Российская парфюмерно-косметическая ассоциация

· — — — — — — Университет им. Гумбольдта, (Берлин, Германия)

· — — — — — — Университет Ноттингема (Великобритания)

· — — — — — — Университет Unibe (Коста-Рика)

· — — — — — — Немецкий исследовательский центр по искусственному интеллекту DFKI, Германия —
К.б.н., зав. кафедры когнитивной нейробиологии, научный руководитель Института нейронаук и когнитивных исследований МГГУ им. М.А. Шолохова.

· — — — — — — +7 965 351 4469

· — — — — — — [email protected]

Контактная информация:

Анатолий Бучин

Где учился: физико-механический факультет Политехнического университета, Высшая нормальная школа в Париже. На данный момент - постдок в Вашингтонском университете.

Что изучает: вычислительную нейробиологию

Особые приметы: играет на саксофоне и флейте, занимается йогой, много путешествует

Интерес к науке возник у меня в детстве: я увлекался насекомыми, собирал их, изучал их образ жизни и биологию. Мама заметила это и привела меня в Лабораторию экологии морского бентоса (ЛЭМБ) (бентос - совокупность организмов, обитающих на грунте и в грунте дна водоемов. - Прим. ред. ) при Санкт-Петербургском городском Дворце творчества юных. Каждое лето, с 6-го по 11-й класс, мы уезжали в экспедиции на Белое море в Кандалакшский заповедник - наблюдать за беспозвоночными животными и измерять их численность. Параллельно я участвовал в биологических олимпиадах для школьников и в качестве научных исследований представлял результаты работы в экспедициях. В старших классах меня заинтересовало программирование, но заниматься исключительно этим было не слишком интересно. Мне неплохо давалась физика, и я решил найти специализацию, которая объединяла бы физику и биологию. Так я оказался в Политехе.

Первый раз во Францию я попал после бакалавриата, когда выиграл стипендию для обучения на магистерской программе в университете Рене Декарта в Париже. Я много стажировался в лабораториях, научился записывать активность нейронов в срезах мозга и анализировать ответы нервных клеток в зрительной коре кошки во время предъявления визуального стимула. Получив степень магистра, я вернулся в Петербург, чтобы завершить свое обучение в Политехе. На последнем курсе магистратуры мы с моим руководителем подготовили российско-французский проект для написания диссертации, и я выиграл финансирование, приняв участие в конкурсе Высшей нормальной школы. Последние четыре года я работал под двойным научным руководством - Бориса Гуткина в Париже и Антона Чижова в Санкт-Петербурге. Незадолго до окончания работы над диссертацией я съездил на конференцию в Чикаго и узнал о позиции постдока в Вашингтонском университете. После собеседования я решил ближайшие два-три года работать именно здесь: мне понравился проект, а с моим новым руководителем Эдриенн Фэйрхолл у нас оказались схожие научные интересы.

О вычислительной нейробиологии

Объектом исследования вычислительной нейробиологии является нервная система, а также самая интересная ее часть - головной мозг. Чтобы объяснить, при чем здесь математическое моделирование, нужно немного рассказать об истории этой молодой науки. В конце 80-х в журнале Science вышла статья, в которой впервые заговорили о вычислительной нейробиологии - новой междисциплинарной области нейронауки, которая занимается описанием информационных и динамических процессов в нервной системе.

Во многом фундамент этой науки заложили еще биофизик Алан Ходжкин и нейрофизиолог Эндрю Хаксли (брат Олдоса Хаксли. - Прим. ред. ). Они изучали механизмы генерации и передачи нервных импульсов в нейронах, выбрав в качестве модельного организма кальмаров. В то время микроскопам и электродам было далеко до современных, а у кальмаров настолько толстые аксоны (отростки, по которым распространяется нервный импульс), что они были видны даже невооруженным глазом. Это помогло аксонам кальмара стать удобной экспериментальной моделью. Открытие Ходжкина и Хаксли заключалось в том, что они объяснили с помощью эксперимента и математической модели, что генерация нервного импульса осуществляется за счет изменения концентрации ионов натрия и калия, проходящих через мембраны нейронов. Впоследствии оказалось, что этот механизм универсален для нейронов многих животных, включая человека. Звучит необычно, но, изучая кальмара, ученые смогли узнать, как нейроны передают информацию у человека. За свое открытие в 1963 году Ходжкин и Хаксли получили Нобелевскую премию.

Задача вычислительной нейробиологии - систематизация огромного количества биологических данных об информационных и динамических процессах, происходящих в нервной системе. С развитием новых методов регистрации нервной активности количество данных о работе мозга растет с каждым днем. Объем книги нобелевского лауреата Эрика Кандела «Principles of Neural Science», в которой изложены базовые сведения о работе мозга, увеличивается с каждым новым тиражом: начиналась книга с 470 страниц, а сейчас ее размер - более 1 700 страниц. Для того чтобы систематизировать такой огромный набор фактов, и нужны теории.

Об эпилепсии

Эпилепсией болеет порядка 1% населения Земли - это 50–60 миллионов человек. Один из радикальных методов лечения - удаление участка мозга, в котором зарождается приступ. Но здесь не все так просто. Примерно в половине случаев эпилепсия у взрослых людей развивается в височной доле мозга, связанной с гиппокампом. Эта структура отвечает за формирование новых воспоминаний. Если у человека вырезать два гиппокампа с обеих сторон мозга, он потеряет способность запоминать новое. Получится такой непрерывный день сурка, поскольку человек будет способен запомнить что-либо только на 10 минут. Суть моих исследований заключалась в том, чтобы предсказать не такие радикальные, но другие возможные и эффективные способы борьбы с эпилепсией. В диссертации я пытался понять, как начинается эпилептический приступ.

Чтобы разобраться, что происходит с мозгом во время приступа, представьте, что вы пришли на концерт и в какой-то момент зал взорвался аплодисментами. Вы хлопаете в своем ритме, а люди вокруг вас - в другом. Если достаточно большое количество людей начинают хлопать одинаково, вам сложно будет продолжать следовать своему ритму и вы, скорее всего, начнете хлопать вместе со всеми. Схожим образом работает эпилепсия, когда нейроны головного мозга начинают сильно синхронизироваться, то есть генерировать импульсы в одно и то же время. Такой процесс синхронизации может вовлекать целые области мозга - в том числе те, что контролируют движение, и тогда возникает припадок. Хотя большая часть приступов характеризуется отсутствием припадков, потому что эпилепсия не всегда возникает в моторных областях.

Допустим, два нейрона связаны между собой возбуждающими связями в обе стороны. Один нейрон пересылает импульс другому, что возбуждает его, и тот пересылает импульс обратно. Если возбуждающие связи слишком сильные, это приведет к увеличению активности за счет обмена импульсами. В норме этого не происходит, поскольку существуют тормозящие нейроны, которые уменьшают активность слишком активных клеток. Но если торможение перестает нормально работать, это может привести к эпилепсии. Зачастую это связано с излишним накоплением хлора в нейронах. В своей работе я разрабатывал математическую модель сети нейронов, которая может переходить в режим эпилепсии при патологии торможения, связанной с накоплением хлора внутри нейронов. В этом мне помогали записи активности нейронов человеческой ткани, полученной после операций на эпилептических больных. Построенная модель позволяет тестировать гипотезы относительно механизмов эпилепсии, чтобы прояснить детали этой патологии. Оказалось, что восстановление баланса хлора в пирамидных нейронах может помочь остановить эпилептический приступ за счет восстановления баланса возбуждения - торможения в сети нейронов. Мой второй научный руководитель, Антон Чижов в Физико-техническом институте в Петербурге, недавно получил грант российского научного фонда по исследованию эпилепсии, так что это направление исследований будет продолжаться в России.

Сегодня немало интересных работ в области вычислительной нейробиологии. Например, в Швейцарии есть проект Blue Brain Project, цель которого - максимально детально описать небольшой участка мозга - соматосенсорной коры крысы, которая отвечает за выполнение движений. Даже в небольшом мозге крысы - миллиарды нейронов, и все они связаны между собой определенным образом. Например, в области коры один пирамидный нейрон образует связи приблизительно с 10 000 других нейронов. В проекте Blue Brain Project записали активность около 14 000 нервных клеток, охарактеризовали их форму и реконструировали около 8 000 000 связей между ними. Затем с помощью специальных алгоритмов они соединили нейроны вместе биологически правдоподобным образом, чтобы в такой сети могла появиться активность. Модель подтвердила теоретически найденные принципы организации коры - например, баланс между возбуждением и торможением. И сейчас в Европе есть большой проект, который называется Human Brain Project. Он должен описать весь человеческий мозг с учетом всех тех данных, которые имеются на сегодняшний день. Этот международный проект - своего рода Большой адронный коллайдер от нейронауки, поскольку в нем участвует около сотни лабораторий из более чем 20 стран.

Критики Blue Brain Project и Human Brain Project задаются вопросом, насколько важно огромное количество деталей, чтобы описать принципы работы мозга. Для сравнения - насколько важно описание Невского проспекта в Петербурге на карте, где видны только континенты? Тем не менее попытка собрать воедино огромное количество данных, безусловно, важна. В худшем случае, даже если мы до конца не поймем, как работает мозг, построив такую модель, мы сможем использовать ее в медицине. Например, для изучения механизмов различных заболеваний и моделирования действия новых лекарств.

В США мой проект посвящен изучению нервной системы гидры. Несмотря на то что даже в школьных учебниках биологии ее изучают одной из первых, ее нервная система до сих пор плохо исследована. Гидра - родственница медузы, поэтому она такая же прозрачная и обладает сравнительно небольшим числом нейронов - от 2 до 5 тысяч. Поэтому можно одновременно записать активность из практически всех клеток нервной системы. Для этого используется такой инструмент, как «кальциевый имиджинг». Дело в том, что каждый раз, когда нейрон разряжается, у него изменяется концентрация кальция внутри клетки. Если добавить специальную краску, которая начинает светиться при повышении концентрации кальция, то каждый раз при генерации нервного импульса мы будем видеть характерное свечение, по которому можно определить активность нейрона. Это позволяет записывать активность в живом животном во время поведения. Анализ такой активности позволит понять, как нервная система гидры управляет ее движением. Аналогии, полученные в ходе таких исследований, можно будет использовать для описания движения более сложных животных - таких как млекопитающие. А в дальней перспективе - в нейроинжиниринге для создания новых систем контроля нервной активности.

О важности нейронауки для общества

Почему нейронаука так важна для современного общества? Во-первых, это возможность разработки новых методов лечения нейрологических заболеваний. Как можно найти лекарство, если не понимаешь, как оно работает на уровне целого мозга? Мой научный руководитель в Париже Борис Гуткин, который также работает в Высшей школе экономики в Москве, занимается изучением кокаиновой и алкогольной зависимости. Его работа посвящена описанию тех перестроек в системе подкрепления, которые приводят к зависимости. Во-вторых, это новые технологии - в частности, нейропротезирование. Например, человек, который остался без руки, благодаря вживленному в мозг импланту сможет контролировать искусственные конечности. Алексей Осадчий в ВШЭ активно занимается этим направлением в России. В-третьих, в дальней перспективе это выход в IT, а именно в технологии машинного обучения. В-четвертых, это сфера образования. Почему, например, мы считаем, что 45 минут - это самая эффективная продолжительность урока в школе? Возможно, этот вопрос стоит лучше изучить, используя знания когнитивной нейронауки. Так мы сможем лучше понять, как нам эффективнее преподавать в школах, университетах и как эффективнее планировать рабочий день.

О нетворкинге в науке

В науке очень важен вопрос коммуникации между учеными. Для нетворкинга необходимо участие в научных школах и конференциях, чтобы быть в курсе текущего положения дел. Научная школа - это такая большая тусовка: на месяц вы оказываетесь среди других PhD-студентов и постдоков. Во время обучения к вам приезжают известные ученые, которые рассказывают о своей работе. Параллельно вы занимаетесь индивидуальным проектом, и вами руководит кто-то более опытный. Не менее важно поддерживать хорошие отношения со своим руководителем. Если у студента-магистра нет хороших рекомендательных писем, его вряд ли возьмут на стажировку. От стажировки зависит, возьмут ли его для написания диссертации. От результатов диссертации - дальнейшая научная жизнь. На каждом из этих этапов обязательно спрашивают отзыв руководителя, и если человек не слишком хорошо работал, то это довольно быстро станет известно, поэтому важно дорожить своей репутацией.

Если говорить о долгосрочных планах, я планирую пройти несколько постдоков, прежде чем найти постоянную позицию в университете или исследовательской лаборатории. Для этого необходимо достаточное количество публикаций, которые сейчас в процессе. Если все сложится, у меня есть мысли вернуться в Россию через несколько лет, чтобы организовать здесь свою лабораторию или научную группу.

Экология сознания: Жизнь. Совершенно точно доказано, что наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности.

Если сравнивать с детенышами других животных, можно сказать, что человек рождается с недоразвитым мозгом: его масса у новорожденного составляет всего 30% массы мозга взрослого. Эволюционные биологи предполагают, что мы должны рождаться недоношенными, чтобы наш мозг развивался, взаимодействуя с внешней средой. Научный журналист Ася Казанцева в лекции «Зачем мозгу учиться?» в рамках программы «Арт-образование 17/18» рассказала

О процессе обучения с точки зрения нейробиологии

и объяснила, как мозг меняется под влиянием опыта, а также чем во время учебы полезны сон и лень.

Кто изучает феномен обучения

Вопросом, зачем мозгу учиться, занимаются как минимум две важные науки - нейробиология и экспериментальная психология. Нейробиология, изучающая нервную систему и происходящее в мозге на уровне нейронов в момент обучения, работает чаще всего не с людьми, а с крысами, улиточками и червячками. Специалисты по экспериментальной психологии пытаются понять, какие вещи влияют на обучаемость человека: например, дают ему важное задание, проверяющее его память или обучаемость, и смотрят, как он с ним справляется. Эти науки интенсивно развивались в последние годы.

Если смотреть на обучение с точки зрения экспериментальной психологии, то полезно вспомнить, что эта наука - наследница бихевиоризма, а бихевиористы считали, что мозг - черный ящик, и их принципиально не интересовало, что в нем происходит. Они воспринимали мозг как систему, на которую можно воздействовать стимулами, после чего в ней случается какая-то магия, и она определенным образом на эти стимулы реагирует. Бихевиористов интересовало, как может выглядеть эта реакция и что на нее способно влиять. Они считали, что обучение - это изменение поведения в результате освоения новой информации

Это определение до сих пор широко применяется в когнитивных науках. Скажем, если студенту дали почитать Канта и он запомнил, что есть «звездное небо над головой и моральный закон во мне», озвучил это на экзамене и ему поставили пятерку, значит, произошло обучение.

С другой стороны, такое же определение применимо и к поведению морского зайца (аплизии). Нейробиологи часто ставят опыты с этим моллюском. Если бить аплизию током в хвостик, она начинает бояться окружающей реальности и втягивать жабры в ответ на слабые стимулы, которых она раньше не боялась. Таким образом, у нее тоже происходит изменение поведения, обучение. Это определение можно применять и к еще более простым биологическим системам. Представим себе систему из двух нейронов, соединенных одним контактом. Если мы подадим на нее два слабых импульса тока, то в ней временно изменится проводимость и одному нейрону станет легче подавать сигналы другому. Это тоже обучение на уровне этой маленькой биологической системы. Таким образом, от обучения, которое мы наблюдаем во внешней реальности, можно построить мостик к тому, что происходит в мозге. В нем есть нейроны, изменения в которых влияют на нашу реакцию на среду, т. е. на произошедшее обучение.

Как работает мозг

Но чтобы говорить о мозге, нужно иметь базовое представление о его работе. В конце концов, у каждого из нас в голове есть эти полтора килограмма нервной ткани. Мозг состоит из 86 миллиардов нервных клеток, или нейронов. У типичного нейрона есть тело клетки со множеством отростков. Часть отростков - дендриты, которые собирают информацию и передают ее на нейрон. А один длинный отросток, аксон, передает ее следующим клеткам. Под передачей информации в рамках одной нервной клетки подразумевается электрический импульс, который идет по отростку, как по проводу. Один нейрон взаимодействует с другим через место контакта, которое называется «синапс», сигнал идет с помощью химических веществ. Электрический импульс приводит к высвобождению молекул - нейромедиаторов: серотонина, дофамина, эндорфинов. Они просачиваются через синаптическую щель, воздействуют на рецепторы следующего нейрона, и он изменяет свое функциональное состояние - например, у него на мембране открываются каналы, через которые начинают проходить ионы натрия, хлора, кальция, калия и т. д. Это приводит к тому, что на нем, в свою очередь, тоже формируется разность потенциалов, и электрический сигнал идет дальше, на следующую клетку.

Но когда клетка передает сигнал другой клетке, этого чаще всего недостаточно для каких-то заметных изменений в поведении, ведь один сигнал может получиться и случайно из-за каких-то возмущений в системе. Для обмена информацией клетки передают друг другу много сигналов. Главный кодирующий параметр в мозге - это частота импульсов: когда одна клетка хочет что-то передать другой клетке, она начинает посылать сотни сигналов в секунду. Кстати, ранние исследовательские механизмы 1960–70-х годов формировали звуковой сигнал. В мозг экспериментальному животному вживляли электрод, и по скорости треска пулемета, который слышался в лаборатории, можно было понять, насколько активен нейрон.

Система кодирования с помощью частоты импульсов работает на разных уровнях передачи информации - даже на уровне простых зрительных сигналов. У нас на сетчатке есть колбочки, которые реагируют на разные длины волн: короткие (в школьном учебнике они называются синие), средние (зеленые) и длинные (красные). Когда на сетчатку поступает волна света определенной длины, разные колбочки возбуждаются в разной степени. И если волна длинная, то красная колбочка начинает интенсивно подавать сигнал в мозг, чтобы вы поняли, что цвет красный. Впрочем, тут все не так просто: у колбочек перекрывается спектр чувствительности, и зеленая тоже делает вид, что она что-то такое увидела. Дальше мозг самостоятельно это анализирует.

Как мозг принимает решения

Принципы, аналогичные тем, что используются в современных механических исследованиях и опытах на животных с вживленными электродами, можно применять и к гораздо более сложным поведенческим актам. Например, в мозге есть так называемый центр удовольствия - прилежащее ядро. Чем более активна эта область, тем сильнее испытуемому нравится то, что он видит, и выше вероятность, что он захочет это купить или, например, съесть. Эксперименты с томографом показывают, что по определенной активности прилежащего ядра можно еще до того, как человек озвучит свое решение, допустим, относительно покупки кофточки, сказать, будет он ее покупать или нет. Как говорит прекрасный нейробиолог Василий Ключарев, мы делаем все, чтобы понравиться нашим нейронам в прилежащем ядре.

Сложность в том, что у нас в мозге нет единства суждений, каждый отдел может иметь свое мнение о происходящем. История, похожая на спор колбочек в сетчатке, повторяется и с более сложными вещами. Допустим, вы увидели кофточку, она вам понравилась, и ваше прилежащее ядро издает сигналы. С другой стороны, эта кофточка стоит 9 тысяч рублей, а зарплата еще через неделю - и тогда ваша амигдала, или миндалевидное тело (центр, связанный в первую очередь с негативными эмоциями), начинает издавать свои электрические импульсы: «Слушай, остается мало денег. Если мы сейчас купим эту кофточку, у нас будут проблемы». Лобная кора принимает решение в зависимости от того, кто громче орет - прилежащее ядро или амигдала. И тут еще важно, что каждый раз впоследствии мы способны проанализировать последствия, к которым это решение привело. Дело в том, что лобная кора общается и с амигдалой, и с прилежащим ядром, и с отделами мозга, связанными с памятью: они ей рассказывают, что произошло после того, как в прошлый раз мы принимали такое решение. В зависимости от этого лобная кора может более внимательно отнестись к тому, что говорят ей амигдала и прилежащее ядро. Так мозг способен меняться под влиянием опыта.

Почему мы рождаемся с маленьким мозгом

Все человеческие дети рождаются недоразвитыми, буквально недоношенными в сравнении с детенышами любого другого вида. Ни у одного животного нет настолько длинного детства, как у человека, и у них не бывает потомства, которое рождалось бы с настолько маленьким мозгом относительно массы мозга взрослого: у человеческого новорожденного она составляет лишь 30%.

Все исследователи сходятся во мнении, что мы вынуждены рождать человека незрелым из-за внушительного размера его мозга. Классическое объяснение - это акушерская дилемма, то есть история конфликта между прямохождением и большой головой. Чтобы родить детеныша с такой головой и крупным мозгом, нужно иметь широкие бедра, но невозможно их бесконечно расширять, потому что это будет мешать ходить. По подсчетам антрополога Холли Дансуорт, чтобы рожать более зрелых детей, достаточно было бы увеличить ширину родового канала всего на три сантиметра, но эволюция все равно в какой-то момент остановила расширение бедер. Эволюционные биологи предположили: вероятно, мы и должны рождаться недоношенными, чтобы наш мозг развивался во взаимодействии с внешней средой, ведь в матке в целом довольно мало стимулов.

Есть знаменитое исследование Блэкмора и Купера. Они в 70-е годы проводили опыты с котятами: большую часть времени держали их в темноте и на пять часов в день сажали в освещенный цилиндр, где они получали не совсем обычную картину мира. Одна группа котят в течение нескольких месяцев видела только горизонтальные полосы, а другая - только вертикальные. В итоге у котят возникли большие проблемы с восприятием реальности. Одни врезались в ножки стульев, потому что не видели вертикальных линий, другие таким же образом игнорировали горизонтальные - например, не понимали, что у стола есть край. С ними проводили тесты, играли с помощью палочки. Если котенок рос среди горизонтальных линий, то горизонтальную палочку он видит и ловит, а вертикальную просто не замечает. Затем вживляли электроды в кору головного мозга котят и смотрели, каким должен быть наклон палочки, чтобы нейроны начали издавать сигналы. Важно, что со взрослым котом во время такого эксперимента ничего бы не случилось, а вот мир маленького котенка, чей мозг только учится воспринимать информацию, вследствие подобного опыта может быть навсегда искажен. Нейроны, которые никогда не подвергались воздействию, перестают функционировать.

Мы привыкли считать, что чем больше связей между разными нейронами, отделами человеческого мозга, тем лучше. Это так, но с определенными оговорками. Нужно не просто чтобы связей было много, а чтобы они имели какое-то отношение к реальной жизни. У полуторагодовалого ребенка синапсов, то есть контактов между нейронами в мозге, гораздо больше, чем у профессора Гарварда или Оксфорда. Проблема в том, что эти нейроны связаны хаотично. В раннем возрасте мозг быстро созревает, и его клетки формируют десятки тысяч синапсов между всем и всем. Каждый нейрон раскидывает отростки во все стороны, и они цепляются за все, до чего смогли дотянуться. Но дальше начинает работать принцип «Используй, или потеряешь». Мозг живет в окружающей среде и пытается справляться с разными задачами: ребенка учат координировать движения, хватать погремушку и т. д. Когда ему показывают, как есть ложкой, у него в коре остаются связи, полезные, чтобы есть ложкой, так как именно через них он гонял нервные импульсы. А связи, которые отвечают за то, чтобы расшвыривать кашу по всей комнате, становятся менее выраженными, потому что родители такие действия не поощряют.

Процессы роста синапсов довольно хорошо изучены на молекулярном уровне. Эрику Канделу дали Нобелевскую премию за то, что он догадался изучать память не на людях. У человека 86 миллиардов нейронов, и, пока ученый разобрался бы в этих нейронах, ему пришлось бы извести сотни испытуемых. А поскольку никто не позволяет вскрывать мозги стольким людям ради того, чтобы посмотреть, как они научились держать ложку, Кандел придумал работать с улиточками. Аплизия - суперудобная система: с ней можно работать, изучив всего четыре нейрона. На самом деле у этого моллюска больше нейронов, но на его примере гораздо проще выявить системы, связанные с обучением и памятью. В ходе экспериментов Кандел понял, что кратковременная память - это временное усиление проводимости уже существующих синапсов, а долговременная заключается в росте новых синаптических связей.

Это оказалось применимо и к человеку - похоже на то, как мы ходим по траве . Сначала нам все равно, куда идти на поле, но постепенно мы протаптываем тропинку, которая потом превращается в грунтовую дорогу, а затем в асфальтированную улицу и трехполосное шоссе с фонарями. Похожим образом нервные импульсы протаптывают себе дорожки в мозге.

Как формируются ассоциации

Наш мозг так устроен: он формирует связи между событиями, происходящими одновременно. Обычно при передаче нервного импульса выделяются нейромедиаторы, которые воздействуют на рецептор, и электрический импульс идет на следующий нейрон. Но есть один рецептор, который работает не так, он называется NMDA. Это один из ключевых рецепторов для формирования памяти на молекулярном уровне. Его особенность в том, что он работает в том случае, если сигнал пришел с обеих сторон одновременно.

Все нейроны куда-то ведут. Один может привести в большую нейронную сеть, которая связана со звучанием модной песенки в кафе. А другие - в другую сеть, связанную с тем, что вы пошли на свидание. Мозг заточен на то, чтобы связывать причину и следствие, он на анатомическом уровне способен запомнить, что между песней и свиданием есть связь. Рецептор активируется и пропускает через себя кальций. Он начинает вступать в огромное количество молекулярных каскадов, которые приводят к работе некоторых до этого не работавших генов. Эти гены проводят синтез новых белков, и вырастает еще один синапс. Так связь между нейронной сетью, отвечающей за песенку, и сетью, отвечающей за свидание, становится более прочной. Теперь даже слабого сигнала достаточно, чтобы пошел нервный импульс и у вас сформировалась ассоциация.

Как обучение влияет на мозг

Есть знаменитая история о лондонских таксистах. Не знаю, как сейчас, но буквально несколько лет назад для того, чтобы стать настоящим таксистом в Лондоне, нужно было сдать экзамен по ориентации в городе без навигатора - то есть знать как минимум две с половиной тысячи улиц, одностороннее движение, дорожные знаки, запреты на остановку, а также уметь выстроить оптимальный маршрут. Поэтому, чтобы стать лондонским таксистом, люди несколько месяцев ходили на курсы. Исследователи набрали три группы людей. Одна группа - поступившие на курсы, чтобы стать таксистами. Вторая группа - те, кто тоже ходил на курсы, но бросил обучение. А люди из третьей группы вообще не думали становиться таксистами. Всем трем группам ученые сделали томограмму, чтобы посмотреть плотность серого вещества в гиппокампе. Это важная зона мозга, связанная с формированием памяти и пространственным мышлением. Обнаружилось, что если человек не хотел становиться таксистом или хотел, но не стал, то плотность серого вещества в его гиппокампе оставалась прежней. А вот если он хотел стать таксистом, прошел тренинг и действительно овладел новой профессией, то плотность серого вещества увеличилась на треть - это очень много.

И хотя до конца не ясно, где причина, а где следствие (то ли люди действительно овладели новым навыком, то ли у них изначально была хорошо развита эта область мозга и поэтому им было легко научиться), совершенно точно наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности. Важно, что и в 60 лет обучение оказывает воздействие на мозг. Конечно, не так эффективно и быстро, как в 20, но целом мозг в течение всей жизни сохраняет некоторую способность к пластичности.

Зачем мозгу лениться и спать

Когда мозг чему-то учится, он выращивает новые связи между нейронами. А это процесс медленный и дорогостоящий, на него нужно тратить много калорий, сахара, кислорода, энергии. Вообще, человеческий мозг, притом что его вес составляет всего 2% от веса всего тела, потребляет около 20% всей энергии, которую мы получаем. Поэтому при любой возможности он старается ничему не учиться, не тратить энергию. На самом деле это очень мило с его стороны, ведь если бы мы запоминали все, что видим каждый день, то мы довольно быстро сошли бы с ума.

В обучении, с точки зрения мозга, есть два принципиально важных момента. Первый заключается в том, что, когда мы осваиваем любой навык, нам становится легче действовать правильно, чем неправильно. Например, вы учитесь водить машину с механической коробкой передач, и вам сначала все равно, переключать передачу с первой на вторую или с первой на четвертую. Для вашей руки и мозга все эти движения равновероятны; вам неважно, в какую сторону гнать нервные импульсы. А когда вы уже более опытный водитель, то вам физически проще переключать передачи правильно. Если вы попадете в машину с принципиально другой конструкцией, вам снова придется задумываться и контролировать усилием воли, чтобы импульс не пошел по проторенной дорожке.

Второй важный момент:

главное в обучении - это сон

У него много функций: поддержание здоровья, иммунитета, обмена веществ и разных сторон работы мозга. Но все нейробиологи сходятся в том, что самая главная функция сна - это работа с информацией и обучением. Когда мы освоили какой-то навык, то хотим сформировать долговременную память. Новые синапсы растут несколько часов, это долгий процесс, и мозгу удобнее всего это делать именно тогда, когда вы ничем не заняты. Во время сна мозг обрабатывает информацию, полученную за день, и стирает то, что из этого надо забыть.

Есть эксперимент с крысами, где их учили ходить по лабиринту с вживленными в мозг электродами и обнаружили, что во сне они повторяли свой путь по лабиринту, а на следующий день ходили по нему лучше. Во многих тестах на людях показано, что то, что мы выучили перед сном, вспомнится лучше, чем выученное с утра. Выходит, что студенты, которые принимаются за подготовку к экзамену где-то ближе к полуночи, все делают правильно. По той же причине важно думать о проблемах перед сном. Конечно, заснуть будет сложнее, но мы загрузим вопрос в мозг, и, может быть, наутро придет какое-то решение. Кстати, сновидения - это, скорее всего, просто побочный эффект обработки информации.

Как обучение зависит от эмоций

Обучение в большой степени зависит от внимания , потому что оно направлено на то, чтобы снова и снова прогонять импульсы по конкретным путям нейронной сети. Из огромного количества информации мы на чем-то фокусируемся, берем это в рабочую память. Дальше то, на чем мы удерживаем внимание, попадает уже в память долговременную. Вы могли понять всю мою лекцию, но это не означает, что вам будет легко ее пересказать. А если вы прямо сейчас на листке бумаги нарисуете велосипед, то это не значит, что он будет хорошо ездить. Люди склонны забывать важные детали, особенно если они не специалисты по велосипедам.

У детей всегда были проблемы с вниманием. Но сейчас в этом смысле все становится проще. В современном обществе уже не так нужны конкретные фактические знания - просто их стало невероятно много. Гораздо важнее оказывается способность быстро ориентироваться в информации, отличать достоверные источники от недостоверных. Нам уже почти и не нужно долго концентрироваться на одном и том же и запоминать большие объемы информации - важнее быстро переключаться. Кроме того, сейчас появляется все больше профессий как раз для людей, которым сложнее концентрироваться.

Есть еще один важный фактор, влияющий на обучение, - эмоции. На самом деле это вообще главное, что у нас было на протяжении многих миллионов лет эволюции, еще до того, как мы нарастили всю эту огромную лобную кору. Ценность овладения тем или иным навыком мы оцениваем с точки зрения того, радует он нас или нет. Поэтому здорово, если удается наши базовые биологические эмоциональные механизмы вовлекать в обучение. Например, выстраивать такую систему мотивации, в которой лобная кора не думает о том, что мы должны выучить что-то с помощью усидчивости и целенаправленности, а в которой прилежащее ядро говорит, что ему просто чертовски нравится это занятие.

Кафедра высшей нервной деятельности является одним из ведущих научно-образовательных центров нашей страны по исследованию нейробиологических и психофизиологических основ поведения человека и животных и подготовке высококвалифицированных специалистов в области нейрофизиологии и психофизиологии.

Кафедра сегодня - это большой коллектив единомышленников, состоящий из более 20 преподавателей и научных сотрудников. На кафедре работают 5 докторов и 10 кандидатов наук, все они являются выпускниками кафедры.

Кафедра ведет учебную работу по образовательным программам бакалавриата по направлению подготовки 06.03.01 Биология и магистратуры по направлению подготовки 06.04.01 Биология, профиль "Физиология, биохимия, биофизика". Сотрудники кафедры выполняют базовые, элективные и курсы специализации бакалавриата, проводят практики для студентов. Авторские магистерские курсы тематически связаны с основными направлениями научной деятельности кафедры. Аспирантура и докторантура кафедры ведут подготовку по специальностям 19.00.02 Психофизиология, 03.03.01 Физиология.

Студенты бакалавриата, магистратуры и аспиранты - это важнейшая часть кафедрального коллектива. Студенты и аспиранты активно включаются в разработку основных исследовательских направлений, развиваемых на кафедре, обогащая тем самым свой профессиональный потенциал.

Научная работа на кафедре ведется в пяти лабораториях: психофизиологии, физиологии сенсомоторных систем, электроэнцефалографии, Научном центре психофизиологии матери и ребенка и группе исследования детской речи. В центре научной деятельности кафедры лежит проблема комплексного исследования психофизиологических механизмов когнитивных функций и эмоциональных состояний, разработка которой ведется по следующим основным направлениям:

    Изучение механизмов когнитивных функций, прежде всего памяти и обучения, внимания, принятия решений. Исследование мозговых механизмов согласования деятельности сенсорных и моторных систем (сенсомоторной координации) как основы психических функций мозга человека.

    Исследование деятельности головного мозга человека при помощи регистрации биопотенциалов головного мозга.

    Изучение ранних этапов развития когнитивных функций в зависимости от условий протекания пренатального развития.

    Исследование нейробиологических особенностей формирования социального поведения и влияния нейрогормонов на поведение животных в норме и на фоне стресса.

    Комплексное изучение различных аспектов становления речи ребенка с ранних этапов онтогенеза и выявления роли разных факторов в овладении речью и языком.

Успешному развитию научно-педагогической деятельности на кафедре способствует тесная связь со многими академическими учреждениями, в том числе Институтом мозга человека РАН, Институтом физиологии им. И.П.Павлова РАН, Институтом эволюционной биохимии и физиологии им. И.М.Сеченова РАН, Педиатрической Медицинской Академией, на базе которых многие студенты выполняют свои квалификационные работы. Кафедра осуществляет активное научно-образовательное сотрудничество с российскими и зарубежными университетами и исследовательскими лабораториями (University of Helsinki, Finland; F.C. Donders Center, The Netherlands; University of Gavle, Sweden; Высшая школа экономики, Москва).