Приближенные методы исследования нелинейных автоматических систем. Реферат: Методы исследования нелинейных систем. Особенности нелинейных систем

Существует точные и приближенные методы исследования нелинейных систем к числу точных методов относятся методы фазовых траекторий, точечных преобразований, частотный метод Попова, метод сечений пространства параметров, метод припасовывания, к приближенным методам относится метод гармонической линеаризации.

Основы метода фазовых траекторий

Метод фазовых траекторий заключается в том, что поведение исследуемой нелинейной системы рассматривается и описывается не во временной области (в виде уравнений процессов в системе), а в фазовом пространстве системы (в виде фазовых траекторий).

Состояние нелинейной системы автоматического управления характеризуется с использованием фазовых координат системы

задающих вектор состояния системы в фазовом пространстве системы

Y (y1, y2, y3,...yn).

При введении в рассмотрение фазовых координат нелинейное дифференциальное уравнение порядка n для свободного процесса в нелинейной системе

преобразуется к системе из n дифференциальных уравнений первого порядка

В ходе процесса в системе фазовые координаты yi изменяются и вектор состояния системы Y описывает годограф в n– мерном фазовом пространстве системы (рис. 56). Годограф вектора состояния (траектория движения изображающей точки M, соответствующей концу вектора) есть фазовая траектория системы. Вид фазовой траектории однозначно связан с характером процесса в системе. Поэтому о свойствах нелинейной системы можно судить по ее фазовым траекториям.

Уравнение фазовой траектории может быть получено из приведенной выше системы уравнений первого порядка, связывающих фазовые координаты и учитывающих свойства системы, путем исключения времени. Фазовая траектория не отображает время процессов в системе.

Связь между фазовой траекторией y(x) и процессом x(t) поясняет рис. 57. Фазовая траектория построена в фазовых координатах 0XY, где x – выходная величина системы, y – скорость изменения выходной величины (первая производная x’). Переходный процесс x(t) построен в координатах x–t (выходная величина – время).

Метод точечных преобразований поверхностей позволяет определить всевозможные виды движения (свободные колебания) нелинейных динамических систем после любых начальных отклонений. Метод развит для анализа и синтеза движений систем, описываемых дифференциальными уравнениями невысокого порядка (второго, третьего), а также для системы с релейным управлением при учете запаздывания.

Замена производится по участкам, для каждого из которых нелинейная часть характеристики представляется линейным отрезком. Это дает возможность получить интегрируемое линейное дифференциальное уравнение, приближенно отражающее процесса в пределах данного участка. Для системы, описываемой дифференциальным уравнением второго порядка, ход расчета можно показать на фазовой плоскости, по осям которой откладываются исследуемая переменная л: и ее производная по времени у. Решение динамической задачи сводится к изучению точечного преобразования координатной полуоси в самое себя.


Рис.10.7. Метод точечных преобразований

Частотный метод румынского ученого В.М. Попова, предложенный в 1960 году, решает задачу об абсолютной устойчивости системы с одной однозначной нелинейностью, заданной предельным значением коэффициента передачи k нелинейного элемента. Если в системе управления имеется лишь одна однозначная нелинейность z=f(x), то, объединив вместе все остальные звенья системы в линейную часть, можно получить ее передаточную функцию Wлч(p), т.е. получить расчетную схему рис.7.1.
Ограничений на порядок линейной части не накладывается, т.е. линейная часть может быть любой. Очертание нелинейности может быть неизвестным, но она должна быть обязательно однозначной. Необходимо лишь знать, в пределах какого угла arctg k (рис. 7.2) она расположена, где к - предельный (наибольший) коэффициент передачи нелинейного элемента.

Рис.7.2. Характеристика нелинейного элемента

Графическая интерпретация критерия В.М.Попова связана с построением а.ф.х. видоизмененной частотной характеристики линейной части системы W*(jω), которая определяется следующим образом:
W*(jω) = Re WЛЧ(jω) + Im WЛЧ(jω),
где Re WЛЧ(jω) и Im WЛЧ(jω) - соответственно действительная и мнимая части линейной системы.
Критерий В.М.Попова может быть представлен или в алгебраической, или частотной форме, а также для случаев устойчивой и неустойчивой линейной части. Чаще используется частотная форма.
Формулировка критерия В.М.Попова в случае устойчивой линейной части: для установления абсолютной устойчивости нелинейной системы достаточно подобрать такую прямую на комплексной плоскости W*(jω), проходящую через точку (, j0), чтобы вся кривая W*(jω) лежала справа от этой прямой. Условия выполнения теоремы показаны на рис. 7.3.

Рис. 7.3. Графическая интерпретация критерия В.М. Попова для абсолютно устойчивой нелинейной системы

На рис. 7.3 приведен случай абсолютной устойчивости нелинейной системы при любой форме однозначной нелинейности. Таким образом, для определения абсолютной устойчивости нелинейной системы по методу В.М. Попова необходимо построить видоизмененную частотную характеристику линейной части системы W*(jω), определить предельное значение коэффициента передачи k нелинейного элемента из условия и через точку (-) на вещественной оси комплексной плоскости провести некоторую прямую так, чтобы характеристика W*(jω) лежала справа от этой прямой. Если такую прямую провести нельзя, то это значит, что абсолютная устойчивость для данной системы невозможна. Очертание нелинейности может быть неизвестным. Критерий целесообразно применять в случаях, когда нелинейность может в процессе работы САУ изменяться, или ее математическое описание неизвестно.

Метод припасовывания нашел свое применение при построении фазовых портретов нелинейных систем, которые могут быть представлены в виде линейной и нелинейной частей (рис. 11.10), причем линейная часть является системой второго порядка, а нелинейная часть характеризуется кусочно­линейной статической характеристикой.

линеиная часть

нелинейная часть

Рис. 11.10 Структурная схема нелинейной системы

Согласно этому методу фазовая траектория строится по частям, каждой из которых соответствует линейный участок статической характеристики. На таком рассматриваемом участке система линейна и ее решение может быть найдено непосредственным интегрированием уравнения для фазовой траекто­рии этого участка. Интегрирование уравнения при построении фазовой траектории производится до тех пор, пока последняя не выйдет на границу следующего участка. Значения фазовых координат в конце каждого участка фазовой траектории являются начальными условиями для решения уравнения на сле­дующем участке. В этом случае говорят, что начальные условия припасовываются, т.е. конец преды­дущего участка фазовой траектории является началом следующего. Граница между участками называ­ется линией переключения.

Таким образом, построение фазового портрета методом припасовывания производится в следую­щей последовательности:

выбираются или задаются начальные условия;

интегрируется система линейных уравнений для того линейного участка, на который попали на­чальные условия, до момента выхода на границу следующего участка;

производится припасовывание начальных условий.

Метод гармонической линеаризации

Общих универсальных методов исследования нелинейных систем не существует - слишком велико разнообразие нелинейностей. Однако, для отдельных видов нелинейных систем разработаны эффективные методы анализа и синтеза.

  • Метод гармонической линеаризации предназначен для представления нелинейной части системы некоторой эквивалентной передаточной функцией, если сигналы в системе могут рассматриваться, как гармонические.
  • Этот метод может быть эффективно использован для исследования периодических колебаний в автоматических системах, в том числе, условий отсутствия этих колебаний, как вредных.

Характерным для метода гармонической линеаризации является рассмотрение одного единственного нелинейного элемента. НЭ можно разделить на статические и динамические . Динамические НЭ описываются нелинейными дифференциальными уравнениями и являются гораздо более сложными. Статические НЭ описывают-ся функцией F(x).

  • Метод гармонической линеаризации в проектировании нелинейных систем автоматического управления. [Djv-10.7M ] Под редакцией Ю.И. Топчеева. Коллектив авторов.
    (Москва: Издательство «Машиностроение», 1970. - Серия «Нелинейные системы автоматического управления»)
    Скан: AAW, обработка, формат Djv: Ilya Sytnikov, 2014
    • КРАТКОЕ ОГЛАВЛЕНИЕ:
      Предисловие (5).
      Глава I. Теоретические основы метода гармонической линеаризации (Е.П. Попов) (13).
      Глава II. Новая форма гармонической линеаризации для систем управления с нелинейными гистерезисными характеристиками (Е.И. Хлыпало) (58).
      Глава III. Метод гармонической линеаризации, базирующийся на оценке чувствительности периодического решения к высшим гармоникам и малым параметрам (А.А. Вавилов) (88).
      Глава IV. Определение амплитудных и фазовых частотных характеристик нелинейных систем (Ю.И. Топчеев) (117).
      Глава V. Приближенные частотные методы анализа качества нелинейных систем управления (Ю.И. Топчеев) (171).
      Глава VI. Повышение точности метода гармонической линеаризации (В.В. Павлов) (186).
      Глава VII. Применение метода гармонической линеаризации к дискретным нелинейным системам управления (С.М. Федоров) (219).
      Глава VIII. Применение асимптотического метода Н.М. Крылова и Н.Н. Боголюбова при анализе нелинейных систем управления (А.Д. Максимов) (236).
      Глава IX. Применение гармонической линеаризации к нелинейным самонастраивающимся системам управления (Ю.М. Козлов, С.И. Марков) (276).
      Глава X. Применение метода гармонической линеаризации к нелинейным автоматическим системам с конечными автоматами (М.В. Старикова) (306).
      Глава XI. Приближенный метод исследования колебательных процессов и скользящих режимов в автоматических системах с переменной структурой (М.В. Старикова) (390).
      Глава XII. Приближенное исследование импульсно-релейной системы управления (М.В. Старикова) (419).
      Глава XIII. Определение колебательных процессов в сложных нелинейных системах при различных начальных отклонениях (М.В. Старикова) (419).
      Глава XIV. Применение метода гармонической линеаризации к системам с периодическими нелинейностями (Л.И. Семенко) (444).
      Глава XV. Применение метода гармонической линеаризации к системам с двумя нелинейностями (В.М. Хлямов) (467).
      Глава XVI. Амплитудно-фазовые характеристики релейных механизмов с двигателями постоянного и переменного тока, полученные по методу гармонической линеаризации (В.В. Цветков) (485).
      Приложения (518).
      Литература (550).
      Алфавитный указатель (565).

Аннотация издательства: Данная книга входит в состав серии монографий, посвященных нелинейным системам автоматического управления.
В ней систематически, в достаточно полном объеме, изложена теория нелинейных систем автоматического управления, базирующаяся на методе гармонической линеаризации. Главное внимание уделено теоретическим основам метода гармонической линеаризации и его практическим применениям к непрерывным, дискретным, самонастраивающимся системам, а также системам с конечными автоматами и перестраиваемой структурой. Рассмотрены способы повышения точности метода гармонической линеаризации путем учета влияния высших гармоник. Предлагаемые способы иллюстрируются многочисленными примерами.
Книга предназначена для научных работников, инженеров, преподавателей и аспирантов высших учебных заведений, занимающихся вопросами автоматического управления.

Предмет:

"Теория автоматического управления"

Тема:

"Методы исследования нелинейных систем"

1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

где: – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

,

где – начальные условия.

Если отклонения

не большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат -

в функции времени. Значения в любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией . Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом . Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).


Рассмотрим свободное движение системы. Приэтом: U(t)=0, e(t)=– x(t)



В общем виде дифференциальное уравнение имеет вид

где (1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

. (2)

Корни характеристического уравнения определяются из соотношений

(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

(4) скорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.


. (5)

Это уравнение с разделяющимися переменными

. (6)

Рассмотрим несколько случаев

1. Пусть корни характеристического уравнения (3) имеют вид

(т.е. ). (7)

При этом переходной процесс описывается уравнениями

x = A sin (wt+j), (8)

y = Aw cos (wt+j),

т.е. представляет собой незатухающие колебания с постоянной амплитудой А и начальной фазой – j.

На фазовой плоскости (рис. 4) эти уравнения представляют собой параметрические уравнения эллипса с полуосями А и wA (где A – постоянная интегрирования).

Если обозначить


Уравнение эллипса можно получить решением уравнения фазовых траекторий

(9)

Состояние равновесия определяется из условия

,

при этом x 0 = y 0 = 0.

Особая точка называется "центр" и соответствует устойчивому равновесию, так как фазовые траектории от нее не удаляются.

2. Пусть корни характеристического уравнения (3) имеют вид

(10)

При этом переходной процесс описывается уравнениями:

Из уравнения фазовых траекторий

получим уравнение

Это уравнение семейства гипербол при изменении A (рис 5).


Практически все системы управления, строго говоря, являются нелинейными, т.е. описываются нелинейными уравнениями. Линейные системы управления являются их линейными моделями, которые получаются путем обычной линеаризации - линеаризации, состоящей в разложении нелинейных функций в ряд Тейлора и отбрасывании нелинейных слагаемых. Однако такая линеаризация не всегда возможна. Если нелинейность допускает обычную линеаризацию, то такая нелинейность называется несущественной. В противном случае нелинейность называется существенной. Существенными нелинейностями обладают всякого рода релейные элементы. Даже в тех случаях, когда обычная линеаризация возможна, часто на конечном этапе исследования может потребоваться рассмотрение исходной нелинейной модели.

Нелинейной системой автоматического регулирования называют такую систему, которая содержит хотя бы одно звено, описываемое нелинейным уравнением.

Виды нелинейных звеньев:

    звено релейного типа;

    звено с кусочно-линейной характеристикой;

    звено с криволинейной характеристикой любого очертания;

    звено, уравнение которого содержит произведение переменных или их производных и другие их комбинации;

    нелинейное звено с запаздыванием;

    нелинейное импульсное звено;

    логическое звено;

    звенья, описываемые кусочно-линейными ДУ, в том числе с переменной структурой.

На рис. 2.1 представлены релейные характеристики разных видов:

    характеристика идеального реле (а);

    характеристика реле с зоной нечувствительности (б);

    характеристика реле с гистерезисом (в);

    характеристика реле с зоной нечувствительности и гистерезисом (г);

    характеристика квантования по уровню (д).

На рис. 2.2 представлены кусочно-линейные характеристики:

    кусочно-линейная характеристика с насыщением (а);

    кусочно-линейная характеристика с зоной нечувствительности и насыщением (б)

    кусочно-линейная характеристика с зоной нечувствительности (в);

    люфт (характеристика звена с люфтом) (г);

    диодная характеристика (д);

    кусочно-линейная характеристика с гистерезисом и насыщением (е).

Различаются статические и динамические нелинейности. Первые представляются в виде нелинейных статических характеристик, вторые – в виде нелинейных дифференциальных уравнений.

Привод регулирующего органа, каким бы он ни был (электрическим, гидравлическим или пневматическим) всегда имеет, во-первых, зону нечувствительности в начале координат; во-вторых, зону насыщения по краям. Кроме того, может иметь место еще гистерезис. Также существуют приводы с постоянной скоростью, относящиеся к звеньям релейного типа.

Зона нечувствительности выражается тем, что двигатель имеет определенный минимальный ток трогания, до достижения которого двигатель будет неподвижен.

ГИСТЕРЕЗИС (от греч. hysteresis - отставание, запаздывание), явление, которое состоит в том, что физ. величина, характеризующая состояние тела (напр., намагниченность), неоднозначно зависит от физ. величины, характеризующей внешние условия (напр., магнитного поля). Г. наблюдается в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. Неоднозначная зависимость величин наблюдается в любых процессах, т. к. для изменения состояния тела всегда требуется определённое время (время релаксации) и реакция тела отстаёт от вызывающих её причин.

Нелинейные системы по сравнению с линейными обладают рядом принципиальных особенностей. В частности, такими особенностями является следующее:

Не выполняется принцип суперпозиции, и исследование нелинейной системы при нескольких воздействиях нельзя сводить к исследованию при одном воздействии;

Устойчивость и характер переходного процесса зависят от величины начального отклонения от положения равновесия;

При фиксированных внешних воздействиях возможны несколько (а иногда и бесконечное множество) положений равновесия;

Возникают свободные установившиеся процессы, которые в линейных системах невозможны (например, автоколебания).

Универсальных аналитических (математических) методов исследования нелинейных систем нет. В процессе развития теории автоматического управления были разработаны различные математические методы анализа и синтеза нелинейных систем, каждый из которых применим для определенного класса систем и задач. Наиболее широко используемыми методами исследования нелинейных систем являются:

Метод фазовой плоскости;

Метод функций Ляпунова;

Метод гармонической линеаризации (метод гармонического баланса) ;

Методы исследования абсолютной устойчивости.

Любое исследование более или менее сложных нелинейных систем, как привило, заканчивается математическим моделированием. И в этом отношении математическое моделирование является одним из универсальных (неаналитических) методов исследования.

Фазовая плоскость

Если уравнения системы управления представлены в нормальной форме, то вектор состояния системы однозначно определяет ее состояние. Каждому состоянию системы в пространстве состояний соответствует точка. Точка, соответствующая текущему состоянию системы, называется изображающей точкой. При изменении состояния изображающая точка описывает траекторию. Эта траектория называется фазовой траекторией. Совокупность фазовых траекторий, соответствующая всевозможным начальным условиям, называется фазовым портретом.

Наглядно фазовую траекторию и фазовый портрет можно представить в случае двухмерного фазового пространства. Двухмерное фазовое пространство называется фазовой плоскостью.

Фазовая плоскость - это координатная плоскость, в которой по осям координат откладываются две переменные (фазовые координаты), однозначно определяющие состояние системы второго порядка.

Метод анализа и синтеза системы управления, основанный на построении фазового портрета, называют методом фазовой плоскости.

По фазовому портрету можно судить о характере переходных процессов. В частности, по фазовой траектории можно построить без расчетов качественно временную характеристику - кривую зависимости х от времени, и, наоборот, по временной характеристике можно качественно построить фазовую траекторию.

В качестве примера сначала по фазовой траектории построим временную характеристику, а затем по временной характеристике - фазовую траекторию. Пусть задана фазовая траектория (рис. 2.4, а).

Отметив на ней характерные точки (начальную точку, точки пересечения с осями координат), нанесем соответствующие им точки на временной плоскости и соединим их плавной кривой (рис. 2.4, б).

Пусть теперь задана временная характеристика (рис. 2.5, а). Отметив на ней характерные точки (начальную точку, точки экстремума и точки пересечения с временной осью), нанесем соответствующие им точки на фазовую плоскость и соединим их плавной кривой

(рис. 2.5,6).

Фазовые портреты нелинейных систем могут содержать тип особой кривой - изолированные замкнутые траектории. Эти кривые называются предельными циклами . Если изнутри и снаружи фазовые траектории сходятся к предельному циклу (рис. 2.8, а),

то такой предельный цикл называется устойчивым предельным циклом. Устойчивому предельному циклу соответствует асимптотически орбитально-устойчивое периодическое движение (автоколебания).

Если фазовые траектории изнутри и снаружи предельного цикла удаляются от него (рис. 2.8,6), такой предельный цикл называется неустойчивым предельным циклом. Периодический процесс, соответствующий неустойчивому предельному циклу, нельзя наблюдать.

Если движение начинается внутри такого предельного цикла, то процесс сходится к положению равновесия. Если движение начинается вне такого предельного цикла, то процесс расходится. Неустойчивый предельный цикл служит границей области притяжения, или границей устойчивости положения равновесия (начала координат).

Возможны два предельных цикла (рис. 2.8, в, г). Внутренний пре-

предельный цикл на рис. 2.8, в устойчив, и ему соответствуют автоколебания, а наружный предельный цикл неустойчив и является границей области автоколебаний: автоколебания возникают при любых начальных отклонениях, не выходящих за наружный предельный цикл.

Наружный предельный цикл на рис. 2.8, г является устойчивым и соответствует автоколебаниям, а внутренний предельный цикл является неустойчивым и является границей области притяжения положения равновесия. В системе с таким фазовым портретом автоколебания возникают при достаточно большом отклонении системы от положения равновесия - отклонении, выходящем за пределы внутреннего предельного цикла. Если движение системы начинается внутри неустойчивого предельного цикла, то она приближается к положению равновесия.

Метод гармонической линеаризации

Метод гармонической линеаризации, или метод гармонического баланса, первоначально был разработан для исследования периодического режима. Однако в дальнейшем он стал использоваться также для анализа устойчивости и синтеза нелинейных систем.

Основная идея метода состоит в следующем. Управляемые системы (объекты), как правило, обладают свойством фильтра низких частот: при возникновении периодических режимов они не пропускают или пропускают с большим ослаблением вторые и более высокие гармоники. И суть метода гармонической линеаризации состоит в описании нелинейного звена линейным уравнением, которое получается при пренебрежении (отбрасывании) указанными гармониками в разложении нелинейной функции в ряд Фурье.

Метод гармонической линеаризации является приближенным методом. Однако его достоинством является то, что он применим для систем любого порядка, в отличие от метода фазовой плоскости, который может быть эффективно применен только к системам 2-го порядка.

Метод Гольдфарба (метод исследования симметричных автоколебаний)

Метод функций Ляпунова

Метод исследований, основанный на построении функции Ляпунова, включая прямой метод Ляпунова, стали называть методом функций Ляпунова.

Метод исследования абсолютной устойчивости

Впервые задача об абсолютной устойчивости была рассмотрена А. И. Лурье, и ее иногда называют задачей Лурье. Им был разработан метод решения этой задачи, основанный на построении функции Ляпунова. В 1961г. румынский ученый В.М. Попов опубликовал работу, в которой изложил частотный метод решения этой проблемы. Это повлекло за собой появление большого потока работ в этом направлении.

Для заданий:

Связь переходного процесса и фазового портрета:

(Бесекерский-Попов стр 595 много всего)

Общим методом исследования устойчивости нелинейных систем является прямой метод Ляпунова. В его основе лежит теорема Ляпунова об устойчивости нелинейных систем. В качестве аппарата исследования используется так называемая функция Ляпунова, представляющая собой знако-определенную функцию координат системы, имеющую также знако-определенную производную по времени. Применение этого метода ограничивается его сложностью.

Более простым методом расчета устойчивости нелинейных систем является метод, разработанный румынским ученым В. М. Поповым. Однако он пригоден для некоторых частных случаев.

Процессы в нелинейной системе могут быть исследованы на основе кусочно-линейной аппроксимации. В этом случае нелинейные характеристики отдельных звеньев разбивают на ряд линейных участков, в пределах которых задача оказывается линейной и может быть решена достаточно просто. На границах участков необходимо произвести «сшивание» отдельных кусков процесса в единый процесс. Метод может применяться, если число участков, на которые разбивается нелинейная характеристика, невелико. Это имеет, например, место для релейных характеристик (см. рис. 5.1). При большом числе участков метод оказывается слишком громоздким. Однако использование ЭВМ позволяет преодолеть эту трудность и с успехом рассчитывать процессы в нелинейных системах при любых нелинейных характеристиках и вообще при наличии нелинейных зависимостей произвольного вида.

Метод фазового пространства в принципе позволяет исследовать системы с нелинейностями произвольного вида, а также с несколькими иелинейностями. При этом в фазовом пространстве строят так называемый фазовый портрет процессов, протекающих (в нелинейной системе. По виду фазового портрета можно судить об устойчивости, возможности возникновения автоколебаний, точности в установившемся режиме. Однако размерность фазового пространства равка порядку дифференциального уравнения нелинейной системы. Это затрудняет использование метода для исследования систем, описываемых дифференциальным уравнением выше второго порядка. В случае дифференциального уравнения второго порядка фазовое пространство представляет собой фазовую плоскость, и этот метод может быть с успехом применен .

Для анализа случайных процессов в нелинейных автоматических системах можно применять математический аппарат теории марковских случайных процессов. Однако сложность метода и возможность

решения уравнения Фоккера - Планка, которое требуется при анализе, только для уравнений первого и в некоторых случаях второго порядка, ограничивает его использование .

Все перечисленные методы относятся к числу точных. Их сложность и ограниченность применения привели к разработке приближенных, но более простых методов исследования нелинейных систем. Приближенные методы позволяют во многих случаях достаточно просто получить прозрачные и легко обозримые результаты анализа нелинейных систем }