Какими путями может осуществляться восстановление атф. Атф - что это такое, описание и форма выпуска лекарства, инструкция по применению, показания, побочные эффекты. Аэробный путь ресинтеза

АТФ - энергетическая основа движений человека. АТФ расщепляется во время движения, синтезируется во время отдыха. В бодибилдинге используется 3 режима воспроизведения АТФ: аэробный механизм, гликоген и молочная кислота, фосфагенный механизм. Помимо воспроизведения АТФ человеком, есть способы получения АТФ из вне, например способ получения АТФ внутримышечно.

АТФ в мышцах

Аденозин трифосфат (АТФ, он же аденин) - молекула, служащая энергетической основой всех биологических процессов человеческого организма. АТФ в мышцах используется для осуществления движений. Мышечное волокно сокращается под действием расщепления аденина, после этого высвобождается определенное количество энергии, которое идёт на сокращение мышц. В человеческом организме аденозин трифосфат получается из инозина (торговая марка: , инозин, рибонозин ит.д.).

Если при сокращении мышц АТФ расщепляется, то в моменты отдыха, наоборот - синтезируется. По большому счёту, АТФ в мышцах представляет из себя ни что иное, как биологическую батарею, которая запасает энергию, когда в ней нет необходимости. С другой стороны, освобождая её, если возникает потребность в энергии.

Роль атф в энергетическом обмене очень велика. Без атф человеческий организм не смог бы осуществлять процесс жизнедеятельности.Человек нуждается в энергетическом снабжении метаболизма, транспортировке различных молекул ит.д. Сокращение мышц не возможно без энергии, получаемой благодаря АТФ.

Структура АТФ

Три компоненты входят в структуру АТФ :

1.Трифосфат

Если рассматривать молекулу АТФ, то в ее центре располагается молекула рибозы, ее конец является началом для аденина, что хорошо показано на рисунке выше. Трифосфат находится с противоположной стороны от рибозы. АТФ заполняет протеиносодержащее волокно, которое называется миозином . Это - фибриллярный белок, являющийся одним из основных компонентов сократительных волокон мышц. Миозин отвечает за формирование всех мышечных клеток. Одно из главных свойств миозина - способность расщеплять АТФ.

Воспроизведение АТФ

Количество АТФ не безгранично. В среднем через несколько секунд движения его количество исчерпывается. Значит, нужно восполнить его количество. В человеке заложены специальные механизмы, которые занимаются воспроизведением структур АТФ:

  • Аэробное дыхание
  • Гликоген и молочная кислота
  • Фосфагенная система

Данные механизмы энергообмена включаются в работу в строго определенной время. В бодибилдинге, где чаще всего практикуются «многоповторы», используются все 3 системы. А вот в скоростно-силовых видах спорта преобладают вторая и третья.


В бодибилдинге крайне интенсивные нагрузки. Поскольку самый мощный источник ресинтеза атф в бодибилдинге - это креатин-фосфат(третий механизм синтеза АТФ), то повышение его количества приведет к тому, что человек сможет тренироваться интенсивно более длительное время.

За счет чего человек двигается? Что такое энергетический обмен? Откуда берется энергия для организма? На сколько ее хватит? При какой физической нагрузке, какая энергия расходуется? Вопросов как видите много. Но больше всего их появляется, когда начинаешь эту тему изучать. Попробую облегчить самым любопытным жизнь и сэкономить время. Поехали…

Энергетический обмен – совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии.

Для обеспечения движения (актиновых и миозиновых нитей в мышце) мышце требуется АденозинТриФосфат (АТФ). При разрыве химических связей между фосфатами выделяется энергия, которая используется клеткой. При этом АТФ переходит в состояние с меньшей энергией в АденозинДиФосфат (АДФ) и неорганического Фосфора (Ф)

Если мышца производит работу, то АТФ постоянно расщепляется на АДФ и неорганический фосфор выделяя при этом Энергию (порядка 40-60 кДж/моль). Для продолжительной работы необходимо восстановление АТФ с такой скоростью, с какой это вещество используется клеткой.

Источники энергии, используемые при кратковременной, непродолжительной и продолжительной работе различные. Образование энергии может осуществляться как анаэробным (безкислородным), так и аэробным (окислительным) способом. Какие качества развивает спортсмен тренируясь в аэробной или анаэробной зоне я писал в статье « «.

Выделяют три энергетические системы, обеспечивающие физическую работу человека:

  1. Алактатная или фосфагенная (анаэробная). Связана с процессами ресинтеза АТФ преимущественно за счет высокоэнергетического фосфатного соединения – КреатинФосфата (КрФ).
  2. Гликолитическая (анаэробная). Обеспечивает ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена и/или глюкозы до молочной кислоты (лактата).
  3. Аэробная (окислительная). Возможность выполнения работы за счет окисления углеводов, жиров, белков при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Источники энергии при кратковременной работе.

Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.

АТФ + H2O ⇒ АДФ + Ф + Энергия

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000-3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.

Выглядит это так:

АДФ+ КрФ ⇒ АТФ + Кр

Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек. Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить путем тренировок до 15 секунд.

Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц. Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.

Источники энергии при непродолжительной работе.

Откуда берется энергия для организма при непродолжительной работе? В этом случае источником является животный углевод, который содержится в мышцах и печени человека — гликоген. Процесс, при котором гликоген способствует ресинтезу АТФ и выделению энергии называется Анаэробным гликолизом (Гликолитическая система энергообеспечения).

Гликолиз – это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Пируват). Дальнейший метаболизм пировиноградной кислоты возможен двумя путями - аэробным и анаэробным.

При аэробной работе пировиноградная кислота (Пируват) участвует в обмене веществ и многих биохимических реакциях в организме. Она превращается в Ацетил-кофермент А, который участвует в Цикле Кребса обеспечивая дыхание в клетке. У эукариот (клетки живых организмов, которые содержат ядро, то есть в клетках человека и животных) Цикл Кребса протекает внутри митохондрии (МХ, это энергетическая станция клетки).

Цикл Кребса (цикл трикарбоновых кислот) – ключевой этап дыхания всех клеток использующих кислород, это центр пересечения многих метаболических путей в организме. Кроме энергетической роли, Циклу Кребса отводится существенная пластическая функция. Участвуя в биохимических процессах он помогает синтезировать такие важные клетки-соединения, как аминокислоты, углеводы, жирные кислоты и др.

Если кислорода недостаточно , то есть работа проводится в анаэробном режиме, тогда пировиноградная кислота в организме подвергается анаэробному расщеплению с образованием молочной кислоты (лактата)

Гликолитическая анаэробная система характеризуется большой мощностью. Начинается этот процесс практически с самого начала работы и выходит на мощность через 15-20 сек. работы предельной интенсивности, и эта мощность не может поддерживаться более 3 – 6 минут. У новичков, только начинающих заниматься спортом, мощности едва ли хватает на 1 минуту.

Энергетическими субстратами для обеспечения мышц энергией служат углеводы – гликоген и глюкоза. Всего же запаса гликогена в организме человека на 1-1,5 часа работы.

Как было сказано выше, в результате большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество лактата (молочной кислоты).

Гликоген ⇒ АТФ + Молочная кислота

Лактат из мышц проникает в кровь и связывается с буферными системами крови для сохранения внутренней среды организма. Если уровень лактата в крови повышается, то буферные системы в какой-то момент могут не справиться, что вызовет сдвиг кислотно-щелочного равновесия в кислую сторону. При закислении кровь становится густой и клетки организма не могут получать необходимого кислорода и питания. В итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. Снижается скорость самого гликолиза, алактатного анаэробного процесса, мощность работы.

Продолжительность работы в анаэробном режиме зависит от уровня концентрации лактата в крови и степенью устойчивости мышц и крови к кислотным сдвигам.

Буферная емкость крови – способность крови нейтрализовать лактат. Чем тренированнее человек, тем больше у него буферная емкость.

Источники энергии при продолжительной работе.

Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

Гликоген + Кислород ⇒ АТФ + Углекислый газ + Вода

Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

Жир + Кислород ⇒ АТФ + Углекислый газ + Вода

Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ. Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.

Больше полезной информации и статей вы можете найти .

Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

  1. Самый маленький бак – КреатинФосфат (это как 98 бензин). Он находится как бы ближе к мышце и запускается в работу быстро. Этого «бензина» хватает на 9 сек. работы.
  2. Средний бак – Гликоген (92 бензин). Этот бак находится чуть дальше в организме и топливо из него поступает с 15-30 секунды физической работы. Этого топлива хватает на 1-1,5 часа работы.
  3. Большой бак – Жир (дизельное топливо). Этот бак находится далеко и прежде, чем топливо начнет поступать из него пройдет 3-6 минут. Запаса жира в организме человека на 10-12 часов интенсивной, аэробной работы.

Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.

1. Анаэробный гликолиз. Ресинтез АТФ в процессе гликолиза. Факторы, влияющие на протекание гликолиза.

2. Аэробный путь ресинтеза АТФ. Особенности регуляции.

3. Ресинтез АТФ в цикле Кребса.

4. Молочная кислота, ее роль в организме, пути ее устранения.

5. Биологическое окисление. Синтез АТФ при переносе электронов по цепи дыхательных ферментов.

1-й вопрос

Распад глюкозы возможен двумя путями. Один из них заключается в распаде шестиуглеродной молекулы глюкозы на две трехуглеродные. Этот путь называется дихотомическим распадом глюкозы. При реализации второго пути происходит потеря молекулой глюкозы одного атома углерода, что приводит к образованию пентозы; этот путь называется апотомический.

Дихотомический распад глюкозы (гликолиз) может происходить как в анаэробных, так и аэробных условиях. При распаде глюкозы в анаэробных условиях в результате процесса молочнокислого брожения образуется молочная кислота. отдельные реакции гликолиза катализируют 11 ферментов, образующих цепь, в которой продукт реакции, ускоряемой предшествующим ферментом, является субстратом для последующего. Гликолиз условно можно разбить на два этапа. В первом происходит затарта энергии, второй – характеризуется накоплением энергии в виде молекул АТФ.

Химизм процесса представлен в теме «Распад углеводов» и заканчивается переходом ПВК в молочную кислоту.

Бóльшая часть молочной кислоты, образующейся в мышце, вымывается в кровеносное русло. Изменению рН крови препятствует бикарбонатная буферная система: у спортсменов буферная емкость крови повышена по сравнению с нетренированными людьми, поэтому они могут переносить более высокое содержание молочной кислоты. Далее молочная кислота транспортируется к печени и почкам, где почти полностью перерабатывается в глюкозу и гликоген. Незначительная часть молочной кислоты вновь превращается в пировиноградную кислоту, которая в аэробных условиях окисляется до конечного продукта.

2-й вопрос

Аэробный распад глюкозы иначе называется пентозофосфатным циклом. В результате протекания этого пути из 6 молекул глюкозо-6-фосфата распадается одна. Апотомический распад глюкозы можно разделить на две фазы: окислительную и анаэробную.

Окислительную фазу где глюкозо-6-фосфат превращается в рибулёзо-5- фосфат представлена в вопросе «Распад углеводов. Аэробный распад глюкозы»

Анаэробная фаза апотомического распада глюкозы.

Дальнейший обмен рибулозо-5-фосфата протекает очень сложно, имеет место превращение фосфопентоз – пентозофосфатный цикл. В результате которого из шести молекул глюкозо-6-фосфата, вступающих в аэробный путь распада углеводов одна молекула глюкозо-6-фосфата полностью расщепляется с образованием СО 2 , Н 2 О и 36 молекул АТФ. Именно наибольший энергетический эффект распада глюкозо-6-фосфата, по сравнению с гликолизом (2 молекулы АТФ), имеет важное значение в обеспечении энергией мозга и мышц при физических нагрузках.

3-й вопрос

Цикл ди- и трикарбоновых кислот (цикл Кребса) занимает важное место в процессах обмена веществ: здесь идет обезвреживание ацетил-КоА (и ПВК) до конечных продуктов: углекислого газа и воды; синтезируется 12 молекул АТФ; образуется ряд промежуточных продуктов, которые используются для синтеза важных соединений. Например, щавелевоуксусная и кетоглутаровая кислоты могут образовать аспарагиновую и глутаминовую кислоты; ацетил-КоА служит исходным веществом для синтеза жирных кислот, холестерина, холевых кислот, гормонов. Цикл ди- и трикарбоновых кислот является следующим звеном основных видов обмена: обмена углеводов, белков, жиров. Подробно смотри в теме «Распад углеводов».

4-й вопрос

Увеличение количества молочной кислоты в саркоплазматическом пространстве мышц сопровождается изменением осмотического давления при этом вода из межклеточной среды поступает внутрь мышечных волокон, вызывая их набухание и регидность. Значительные изменения осмотического давления в мышцах могут быть причиной болевых ощущений.

Молочная кислота легко диффундирует через клеточные мембраны по градиенту концентрации в кровь, где вступает во взаимодействие с бикарбонатной системой, что приводит к выделению «неметаболического» избытка СО 2:

NаНСО 3 + СН 3 – СН – СООН СН 3 – СН – СООNа + Н 2 О + СО 2

Таким образом, увеличение кислотности, повышение СО 2 , служит сигналом для дыхательного центра, при выходе молочной кислоты усиливается легочная вентиляция и поставка кислорода работающей мышцы.

5-й вопрос

Биологическое окисление – это совокупность окислительных реакций, происходящих в биологических объектах (в тканях) и обеспечивающих организм энергией и метаболитами для осуществления процессов жизнедеятельности. При биологическом окислении также идет разрушение вредных продуктов обмена веществ, продуктов жизнедеятельности организма.

В развитии теории биологического окисления принимали участие ученые: 1868 г. - Шёнбайн (немецкий ученый), 1897 г. - А.Н. Бах, 1912 г. В.И. Палладин, Г.Виланд. Взгляды этих ученых положены в основу современной теории биологического окисления. Её суть.

В переносе Н 2 на О 2 участвуют несколько ферментных систем (дыхательная цепь ферментов), выделяют три основных компонента: дегидрогеназы (НАД, НАДФ); флавиновые (ФАД, ФМН); цитохромы (гем Fe 2+). В результате образуется конечный продукт биологического окисления – H 2 O. В биологическом окислении участвует цепь дыхательных ферментов.

Первый акцептор Н 2 – дегидрогеназа, кофермент – либо НАД (в митохондриях), либо НАДФ (в цитоплазме).

H(H + ē)

2H + +O 2- → H 2 O

Субстраты: лактат, цитрат, малат, сукцинат, глицерофосфат и другие метаболиты.

В зависимости от природы организма и окисляемого субстрата окисление в клетках может осуществляться главным образом по одному из 3-х путей.

1.При полном наборе дыхательных ферментов, когда идет предварительное активирование О в О 2- .

Н (Н + е -) Н + е - 2е - 2е - 2е - 2е - 2е -

S НАД ФАД b c a 1 a 3 1/2O 2 H 2 O

Н (Н + е -) Н + е -

2.Без цитохромов:

S НАД ФАД О 2 Н 2 О 2 .

3.Без НАД и без цитохромов:

S ФАД О 2 Н 2 О 2 .

Учёные установили, что при переносе водорода на кислород при участии всех переносчиков образуется три молекулы АТФ. Восстановление формы НАД·H 2 и НАДФ·H 2 при переносе H 2 на O 2 дают 3 АТФ, а ФАД·H 2 даёт 2 АТФ. При биологическом окислении образуется Н 2 О или Н 2 О 2 , она, в свою очередь, под действием каталазы распадается на Н 2 О иО 2 . Вода, образующаяся при биологическом окислении, расходуется на нужды клетки (реакции гидролиза) или выводится как конечный продукт из организма.

При биологическом окислении выделяется энергия, которая либо переходит в тепловую и рассеивается, либо накапливается в ~ АТФ и потом используется на все жизненные процессы.

Процесс, при котором идет накопление энергии, освободившейся при биологическом окислении, в ~ связях АТФ – окислительное фосфорилирование, то есть синтез АТФ из АДФ и Ф(н) за счет энергии окисления органических веществ:

АДФ + Ф(н) АТФ + Н 2 О.

В макроэргических связях АТФ накапливается 40% энергии биологического окисления.

Впервые на сопряжение биологического окисления с фосфорилированием АДФ указал В.А.Энгельгардт (1930 г.). Позднее В.А.Белицер и Е.Т. Цыбакова показали, что синтез АТФ из АДФ и Ф(н) идет в митохондриях при миграции е - от субстрата к О 2 через цепь дыхательных ферментов. Эти ученые обнаружили, что на каждый поглощенный атом О образуется 3 молекулы АТФ, то есть в дыхательной цепи ферментов существует 3 пункта сопряжения окисления с фосфорилированием АДФ:

Ресинтез АТФ – это метаболический процесс, перманентно про-ис-хо-дя-щий в ор-га-низ-ме . Почему? Потому что АТФ является уни-вер-саль-ным источником энергии для всех клеток организма . Рас-шиф-ро-вы-ва-ет-ся аббревиатура АТФ, как аде-но-зин-три-фос-фор-ная кислота. И именно она обеспечивает работу мозга, сердца, мышц и все-го остального . Со-от-вет-ст-вен-но, раз она является источником энергии, её за-па-сы мо-гут истощаться. В зависимости от ин-тен-сив-нос-ти истощения, ресинтез АТФ мо-гут обес-пе-чи-вать фос-фо-ри-ли-ро-ва-ние, гликолиз или окисление . Каждый способ ха-рак-те-ри-зу-ет эф-фек-тив-ность и дли-тель-ность процесса. Наиболее эффективно фос-фо-ри-ли-ро-ва-ние, а дольше всего син-те-зи-ро-вать АТФ может окисление .

Зачем вообще Вам знать, как осуществляется ресинтез АТФ? Затем, что это позволит Вам более адекватно составлять себе тренировочный план , подбирать со-от-вет-ст-вую-щее спортивное питание, тре-ни-ро-вать-ся в наиболее оптимальном объё-ме и лиш-ний раз убедиться в не-об-хо-ди-мос-ти кардио тренировок . Например, имен-но вви-ду сис-те-мы ресинтеза АТФ длительность силовой тренировки не должна пре-вы-шать 60 ми-нут . Просто потому, что на-кап-ли-ва-ет-ся избыток лактата, что при-во-дит к ре-син-те-зу АТФ за счёт окисления три-гли-це-ри-дов, а не углеводов. С другой сто-ро-ны, ес-ли есть не-об-хо-ди-мость похудеть и, сле-до-ва-тель-но, мо-би-ли-зо-вать жир-ные кис-ло-ты, то наи-бо-лее эф-фек-тив-но проводить тре-ни-ро-воч-ные сессии дольше 90 минут. Вот да-вай-те и раз-бе-рём-ся, что, как и почему надо делать!

Системы ресинтеза АТФ

Фосфорилирование – это три типа реакций, основной из которых является процесс ре-син-те-за АТФ при участии креатина . Всего процесс фос-фо-ри-ли-ро-ва-ние длится око-ло 10–15 се-кунд, но первые 5–6 секунд АТФ вос-ста-нав-ли-ва-ет-ся ис-клю-чи-тель-но этой сис-те-мой . Пос-ле этого подключается гликолиз, и именно поэтому существует такая су-щест-вен-ная раз-ни-ца между силовыми показателями на раз и силовыми показателями на 2–3 пов-то-ре-ния. Ре-син-тез креатина занимает около 5–15 минут, причём за первые 1,5 ми-ну-ты вос-ста-нав-ли-ва-ет-ся примерно 65%, за последующие 4,5 минуты 85% и уже по-том ос-тав-шие-ся 15% . Имен-но поэтому во время силовых циклов существует не-об-хо-ди-мость в дол-гом от-ды-хе между подходами и низком количестве повторений.

Гликолиз – это процесс ресинтеза АТФ при участии углеводов в форме гликогена . На-чи-на-ет-ся этот процесс при нагрузках, длящихся дольше нескольких секунд . Все-го гли-ко-лиз участвует в процессе вос-ста-нов-ле-ния АТФ около 2–3 минут в за-ви-си-мос-ти от вы-нос-ли-вос-ти спортсмена . Но доля гликолиза по истечении 30 се-кунд бес-пре-рыв-ной нагрузки перманентно снижается, а в процессе гликолиза вы-ра-ба-ты-ва-ет-ся всё боль-ше пирувата, который затем ме-та-бо-ли-зи-ру-ет-ся в лактат, сти-му-ли-руя вос-па-ле-ние в мышечных волокнах . По факту уже по истечении 15 се-кунд на-чи-на-ет-ся син-те-зи-ро-вать-ся пируват, а значит, подключается система окис-ле-ния. Дли-тель-ность отдыха для вос-ста-нов-ле-ния этой системы ресинтеза АТФ на-хо-дит-ся в диа-па-зо-не 30–90 секунд . В случае, если атлет це-ле-на-прав-лен-но пы-та-ет-ся до-бить-ся ме-та-бо-ли-чес-ко-го стресса , ему может быть выгодно отдыхать 30 се-кунд, но ес-ли при-ме-ня-ет-ся объёмно-силовой тренинг , то пред-поч-ти-тель-но от-ды-хать 60–90 секунд.

Окисление – это процесс ресинтеза АТФ посредством мобилизации и дальнейшей ути-ли-за-ции жирных кислот и/или углеводов. «Топливо» может поступать из три-гли-це-ри-дов и гликогена в мышцах, липидов из подкожно-жировой клетчатки и из глю-ко-зы в кро-ви . Но в том случае, если гликогена будет не хватать для выполнения тя-жё-лой на-груз-ки, организм будет разрушать белки скелетной мускулатуры для мо-би-ли-за-ции ами-но-кис-лот, и их дальнейшей утилизации в виде источника АТФ . Имен-но по-это-му, ес-ли человек тренируется в большом количестве повторений, ему име-ет смысл уве-ли-чить количество потребляемых углеводов и/или употреблять «прос-тые» уг-ле-во-ды во время тренировки. Во время похудения может быть осмысленно при-ни-мать BCAA .

Заключение: поскольку процесс фос-фо-ри-ли-ро-ва-ния осу-щест-вля-ет-ся пре-иму-щест-вен-но при учас-тии креатина, во время силовых циклов имеет смысл при-ни-мать креа-тин в виде добавки . Оптимальным временем под нагрузкой во время объём-ных цик-лов является 30–40 секунд, потому что потом начинает активно вы-ра-ба-ты-вать-ся пируват. Чем более развиты митохондрии, тем дольше организму уда-ёт-ся эф-фек-тив-но ути-ли-зи-ро-вать продукты распада, образующиеся в процессе гли-ко-ли-за, что по-ло-жи-тель-но ска-зы-ва-ет-ся на адап-та-ци-он-ном резерве атлета и пре-дель-но эф-фек-тив-ном для него тренировочном объёме – это ещё одна причина де-лать кар-дио на мас-се.

Источники

Ncbi.nlm.nih.gov/pmc/articles/PMC2716334/

Ncbi.nlm.nih.gov/pmc/articles/PMC4898252/

Ncbi.nlm.nih.gov/pmc/articles/PMC2917728/

Ncbi.nlm.nih.gov/pmc/articles/PMC3005844/

Sciencedirect.com/science/article/pii/S1550413112005037

Ncbi.nlm.nih.gov/pubmed/8964751/

Ncbi.nlm.nih.gov/pmc/articles/PMC1157744/

Ncbi.nlm.nih.gov/pubmed/4030556/

Ncbi.nlm.nih.gov/pubmed/9950784/

Ncbi.nlm.nih.gov/pubmed/2600022/

Ncbi.nlm.nih.gov/pubmed/20847704

Прежде чем мы описать систему MOVEOUT, я хочу, чтобы вы вообще понимали какие процессы происходят в мышцах при работе. Я не буду вдаваться в мельчайшие подробности, дабы не травмировать вашу психику, поэтому расскажу о самом важном. Что же, возможно многие не поймут этот раздел, но советую его хорошо изучить, так как благодаря нему вы поймете как работают наши мышцы, а значит поймете как их правильно тренировать.

Итак, основное, что нужно для работы наших мышц – это молекулы АТФ с которой мышцы получают энергию. От расщепления АТФ образуется молекула АДФ + энергия. Вот только запасов АТФ хватает в наших мышцах всего на 2 секунды работы, а далее идет ресинтез АТФ из молекул АДФ. Собственно, от типов процессов ресинтеза АТФ и зависит работоспособность и функциональность.

Итак, выделяют такие процессы. Они обычно подключаются друг за другом

1. Анаэробный креатинфосфатный

Главным преимуществом креатинфосфатного пути образования АТФ являются

  • малой время развертывания,
  • высокая мощность.

Креатинфосфатный путь связан с веществом креатинфосфатом . Креатинфосфат состоит из вещества креатина. Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой . Данный путь ресинтеза АТФ иногда называют креатикиназным, иногда фосфатным или алактатным.

Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.

Фосфатная система отличается очень быстрым ресинтезом АТФ из АДФ, однако она эффективна только в течение очень короткого времени. При максимальной нагрузке фосфатная система истощается в течение 10 с. Вначале в течение 2 с расходуется АТФ, а затем в течение 6-8 с - КФ.

Фосфатная система называется анаэробной, потому что в ресинтезе АТФ не участвует кислород, и алактатной, поскольку не образуется молочная кислота.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

2. Анаэробный гликолиз

По мере увеличения интенсивности нагрузки наступает период, когда мышечная работа уже не может поддерживаться за счет одной только анаэробной системы из-за нехватки кислорода. С этого момента в энергообеспечение физической работы вовлекается лактатный механизм ресинтеза АТФ, побочным продуктом которого является молочная кислота. При недостатке кислорода молочная кислота, образовавшаяся в первой фазе анаэробной реакции, не нейтрализуется полностью во второй фазе, в результате чего происходит ее накопление в работающих мышцах, что приводит к ацидозу, или закислению, мышц.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Время развертывания 20-30 секунд.

Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

  • он быстрее выходит на максимальную мощность,
  • имеет более высокую величину максимальной мощности,
  • не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки :

  • процесс малоэкономичен,
  • накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

1. Аэробный путь ресинтеза

Аэробный путь ресинтеза АТФиначе называется тканевым дыханием – это основной способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на молекулярный кислород, доставляемый в мышцы кровью, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез молекул АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ.

Кислородная, или аэробная, система является наиболее важной для спортсменов на выносливость, поскольку она может поддерживать физическую работу в течение длительного времени. Кислородная система обеспечивает организм, и в частности мышечную деятельность, энергией посредством химического взаимодействия пищевых веществ (главным образом, углеводов и жиров) с кислородом. Пищевые вещества поступают в организм с пищей и откладываются в его хранилищах для дальнейшего использования по необходимости. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Запасы гликогена могут сильно варьироваться, но в большинстве случаев их хватает как минимум на 60-90 мин работы субмаксимальной интенсивности. В то же время запасы жиров в организме практически неисчерпаемы.

Углеводы являются более эффективным "топливом" по сравнению с жирами, так как при одинаковом потреблении энергии на их окисление требуется на 12% меньше кислорода. Поэтому в условиях нехватки кислорода при физических нагрузках энергообразование происходит в первую очередь за счет окисления углеводов.

Поскольку запасы углеводов ограничены, ограничена и возможность их использования в видах спорта на выносливость. После исчерпания запасов углеводов к энергообеспечению работы подключаются жиры, запасы которых позволяют выполнять очень длительную работу. Вклад жиров и углеводов в энергообеспечение нагрузки зависит от интенсивности упражнения и тренированности спортсмена. Чем выше интенсивность нагрузки, тем больше вклад углеводов в энергообразование. Но при одинаковой интенсивности аэробной нагрузки тренированный спортсмен будет использовать больше жиров и меньше углеводов по сравнению с неподготовленным человеком.

Таким образом, тренированный человек будет более экономично расходовать энергию, так как запасы углеводов в организме небезграничны.

Производительность кислородной системы зависит от количества кислорода, которое способен усвоить организм человека. Чем больше потребление кислорода во время выполнения длительной работы, тем выше аэробные способности. Под воздействием тренировок аэробные способности человека могут вырасти на 50%.

Время развертывания составляет 3 – 4 минуты, но у хорошо тренированных спортсменов может составлять 1 мин. Это связано с тем, что на доставку кислорода в митохондрии требуется перестройка практически всех систем организма.

Время работы с максимальной мощностью составляет десятки минут. Это дает возможность использовать данный путь при длительной работе мышц.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный путь имеет ряд преимуществ:

  • Экономичность: из одной молекулы гликогена образуется 39 молекул АТФ, при анаэробном гликолизе только 3 молекулы.
  • Универсальность в качестве начальных субстратов здесь выступают разнообразные вещества: углеводы, жирные кислоты, кетоновые тела, аминокислоты.
  • Очень большая продолжительность работы. В покое скорость аэробного ресинтеза АТФ может быть небольшой, но при физических нагрузках она может стать максимальной.

Однако есть и недостатки.

  • Обязательное потребление кислорода, что ограничено скоростью доставки кислорода в мышцы и скоростью проникновения кислорода через мембрану митохондрий.
  • Большое время развертывания.
  • Небольшую по максимальной величине мощность.

Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью получена этим путем ресинтеза АТФ.

Примечание. Эта глава написана на основе учебника "ОСНОВЫ БИОХИМИИ СПОРТА"