Метод Лагранжа (метод вариации произвольных постоянных). Условная оптимизация. Метод множителей Лагранжа

С уть метода Лагранжа заключается в сведении задачи на условный экстремум к решению задачи безусловного экстремума. Рассмотрим модель нелинейного программирования:

(5.2)

где
– известные функции,

а
– заданные коэффициенты.

Отметим, что в данной постановке задачи ограничения заданы равенствами, отсутствует условие неотрицательности переменных. Кроме того, полагаем, что функции
непрерывны со своими первыми частными производными.

Преобразуем условия (5.2) таким образом, чтобы в левых или правых частях равенств стоял ноль :

(5.3)

Составим функцию Лагранжа. В нее входит целевая функция (5.1) и правые части ограничений (5.3), взятые соответственно с коэффициентами
. Коэффициентов Лагранжа будет столько, сколько ограничений в задаче.

Точки экстремума функции (5.4) являются точками экстремума исходной задачи и наоборот: оптимальный план задачи (5.1)-(5.2) является точкой глобального экстремума функции Лагранжа.

Действительно, пусть найдено решение
задачи (5.1)-(5.2), тогда выполняются условия (5.3). Подставим план
в функцию (5.4) и убедимся в справедливости равенства (5.5).

Таким образом, чтобы найти оптимальный план исходной задачи, необходимо исследовать на экстремум функцию Лагранжа. Функция имеет экстремальные значения в точках, где ее частные производные равны нулю . Такие точки называютсястационарными.

Определим частные производные функции (5.4)

,

.

После приравнивания нулю производных получим системуm+n уравнений сm+n неизвестными

,(5.6)

В общем случае система (5.6)-(5.7) будем иметь несколько решений, куда войдут все максимумы и минимумы функции Лагранжа. Для того чтобы выделить глобальный максимум или минимум, во всех найденных точках вычисляют значения целевой функции. Наибольшее из этих значений будет глобальным максимумом, а наименьшее – глобальным минимумом. В некоторых случаях оказывается возможным использование достаточных условий строгого экстремума непрерывных функций (см. ниже задачу 5.2):

пусть функция
непрерывна и дважды дифференцируема в некоторой окрестности своей стационарной точки(т.е.
)). Тогда:

а ) если
,
(5.8)

то – точка строгого максимума функции
;

б) если
,
(5.9)

то – точка строгого минимума функции
;

г ) если
,

то вопрос о наличии экстремума остается открытым.

Кроме того, некоторые решения системы (5.6)-(5.7) могут быть отрицательными. Что не согласуется с экономическим смыслом переменных. В этом случае следует проанализировать возможность замены отрицательных значений нулевыми.

Экономический смысл множителей Лагранжа. Оптимальное значение множителя
показывает на сколько изменится значение критерияZ при увеличении или уменьшении ресурсаj на одну единицу, так как

Метод Лагранжа можно применять и в том случае, когда ограничения представляют собой неравенства. Так, нахождение экстремума функции
при условиях

,

выполняют в несколько этапов:

1. Определяют стационарные точки целевой функции, для чего решают систему уравнений

.

2. Из стационарных точек отбирают те, координаты которых удовлетворяют условиям

3. Методом Лагранжа решают задачу с ограничениями-равенствами (5.1)-(5.2).

4. Исследуют на глобальный максимум точки, найденные на втором и третьем этапах: сравнивают значения целевой функции в этих точках – наибольшее значение соответствует оптимальному плану.

Задача 5.1 Решим методом Лагранжа задачу 1.3, рассмотренную в первом разделе. Оптимальное распределение водных ресурсов описывается математической моделью

.

Составим функцию Лагранжа

Найдем безусловный максимум этой функции. Для этого вычислим частные производные и приравняем их к нулю

,

Таким образом, получили систему линейных уравнений вида

Решение системы уравнений представляет собой оптимальный план распределения водных ресурсов по орошаемым участкам

, .

Величины
измеряются в сотнях тысяч кубических метров.
- величина чистого дохода на одну сотню тысяч кубических метров поливной воды. Следовательно, предельная цена 1 м 3 оросительной воды равна
ден. ед.

Максимальный дополнительный чистый доход от орошения составит

160·12,26 2 +7600·12,26-130·8,55 2 +5900·8,55-10·16,19 2 +4000·16,19=

172391,02 (ден. ед.)

Задача 5.2 Решить задачу нелинейного программирования

Ограничение представим в виде:

.

Составим функцию Лагранжа и определим ее частные производные

.

Чтобы определить стационарные точки функции Лагранжа, следует приравнять нулю ее частные производные. В результате получим систему уравнений

.

Из первого уравнения следует

. (5.10)

Выражение подставим во второе уравнение

,

откуда следует два решения для :

и
. (5.11)

Подставив эти решения в третье уравнение, получим

,
.

Значения множителя Лагранжа и неизвестной вычислим по выражениям (5.10)-(5.11):

,
,
,
.

Таким образом, получили две точки экстремума:

;
.

Для того чтобы узнать являются ли данные точки точками максимума или минимум, воспользуемся достаточными условиями строгого экстремума (5.8)-(5.9). Предварительно выражение для , полученное из ограничения математической модели, подставим в целевую функцию

,

. (5.12)

Для проверки условий строгого экстремума следует определить знак второй производной функции (5.11) в найденных нами экстремальных точках
и
.

,
;

.

Таким образом, (·)
является точкой минимума исходной задачи (
), а (·)
– точкой максимума.

Оптимальный план :

,
,
,

.

Метод множителей Лагранжа (в англ. литературе «LaGrange"s method of undetermined multipliers») ˗ это численный метод решения оптимизационных задач, который позволяет определить «условный» экстремум целевой функции (минимальное или максимальное значение)

при наличии заданных ограничений на ее переменные в виде равенств (т.е. определена область допустимых значений)

˗ это значения аргумента функции (управляемые параметры) на вещественной области при котором значение функции стремится к экстремуму. Применение названия «условный» экстремум связано с тем, что на переменные наложено дополнительное условие, которое ограничивает область допустимых значений при поиске экстремума функции.

Метод множителей Лагранжа позволяет задачу поиска условного экстремума целевой функции на множестве допустимых значений преобразовать к задаче безусловной оптимизации функции.

В случае если функции и непрерывны вместе со своими частными производными, то существуют такие переменные λ не равные одновременно нулю, при которых выполняется следующее условие:

Таким образом, в соответствии с методом множителей Лагранжа для поиска экстремума целевой функции на множестве допустимых значений составляю функцию Лагранжа L(х, λ), которую в дальнейшем оптимизируют:

где λ ˗ вектор дополнительных переменных, называемых неопределенными множителями Лагранжа.

Таким образом, задача нахождения условного экстремума функции f(x) свелась к задаче поиска безусловного экстремума функции L(x, λ).

и

Необходимое условие экстремума функции Лагранжа задается системой уравнений (система состоит из «n + m» уравнений):

Решение данной системы уравнений позволяет определить аргументы функции (Х), при которых значение функции L(x, λ), а также значение целевой функции f(x) соответствуют экстремуму.

Величина множителей Лагранжа (λ) имеет практический интерес в случае, если ограничения представлены в форме со свободным членом уравнения (константой). В этом случае можно рассматривать дальнейшее (увеличение/уменьшение) значения целевой функции за счет изменения значения константы в системе уравнения . Таким образом, множитель Лагранжа характеризует скорость изменения максимума целевой функции при изменении ограничивающей константы.

Существует несколько способов определения характера экстремума полученной функции:

Первый способ: Пусть – координаты точки экстремума, а - соответствующее значение целевой функции. Берется точка , близкая к точке , и вычисляется значение целевой функции :

Если , то в точке имеет место максимум.

Если , то в точке имеет место минимум.

Второй способ: Достаточным условием, из которого можно выяснить характер экстремума, является знак второго дифференциала функции Лагранжа. Второй дифференциал функции Лагранжа определяется следующим образом:

Если в заданной точке минимум , если же , то целевая функция f(x) имеет в данной точке условный максимум.

Третий способ: Также характер экстремума функции можно выяснить рассмотрев гессиан функции Лагранжа. Матрица Гессе представляет собой симметричную квадратную матрицу вторых частных производных функции в точке , в которой элементы матрицы симметричны относительно главной диагонали.

Для определения типа экстремума (максимум или минимум функции) можно воспользоваться правилом Сильвестра:

1. Для того, чтобы второй дифференциал функции Лагранжа был знакоположителен необходимо, чтобы угловые миноры функции были положительными . При таких условиях функция в этой точке имеет минимум.

2. Для того, чтобы второй дифференциал функции Лагранжа был знакоотрицателен , необходимо, чтобы угловые миноры функции чередовались, причем первый элемент матрицы должен быть отрицательнsv . При таких условиях функция в этой точке имеет максимум.

Под угловым минором понимаем минор, расположенный в первых k строках и k столбцах исходной матрицы.

Основное практическое значение метода Лагранжа заключается в том, что он позволяет перейти от условной оптимизации к безусловной и, соответственно, расширить арсенал доступных методов решения задачи. Однако задача решения системы уравнений, к которой сводится данный метод, в общем случае не проще исходной задачи поиска экстремума. Такие методы называются непрямыми. Их применение объясняется необходимостью получить решение экстремальной задачи в аналитической форме (допустим, для тех или иных теоретических выкладок). При решении конкретных практических задач обычно используются прямые методы, основанные на итеративных процессах вычисления и сравнения значений оптимизируемых функций.

Методика расчета

1 шаг : Определяем функцию Лагранжа из заданной целевой функции и системы ограничений:

Вперёд

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

Сегодня на уроке мы научимся находить условные или, как их ещё называют, относительные экстремумы функций нескольких переменных, и, прежде всего, речь пойдёт, конечно же, об условных экстремумах функций двух итрёх переменных , которые встречаются в подавляющем большинстве тематических задач.

Что нужно знать и уметь на данный момент? Несмотря на то, что эта статья находится «на окраине» темы, для успешного усвоения материала потребуется не так уж и много. На данный момент вы должны ориентироваться в основных поверхностях пространства , уметь находить частные производные (хотя бы на среднем уровне) и, как подсказывает беспощадная логика, разбираться в безусловных экстремумах . Но даже если у вас низкий уровень подготовки, не спешите уходить – все недостающие знания/навыки реально «подобрать по пути», причём безо всяких многочасовых мучений.

Сначала проанализируем само понятие и заодно осуществим экспресс-повторение наиболее распространённых поверхностей . Итак, что же такое условный экстремум? …Логика здесь не менее беспощадна =) Условный экстремум функции – это экстремум в обычном понимании этого слова, который достигается при выполнении определённого условия (или условий).

Представьте произвольную «косую» плоскость в декартовой системе . Никакого экстремума здесь нет и в помине. Но это до поры до времени. Рассмотрим эллиптический цилиндр , для простоты – бесконечную круглую «трубу», параллельную оси . Очевидно, что эта «труба» «высечет» из нашей плоскости эллипс , в результате чего в верхней его точке будет максимум, а в нижней – минимум. Иными словами, функция, задающая плоскость, достигает экстремумов при условии , что её пересёк данный круговой цилиндр. Именно «при условии»! Другой эллиптический цилиндр, пересекающий эту плоскость, почти наверняка породит иные значения минимума и максимума.

Если не очень понятно, то ситуацию можно смоделировать реально (правда, в обратном порядке) : возьмите топор, выйдите на улицу и срубите… нет, Гринпис потом не простит – лучше порежем «болгаркой» водосточную трубу =). Условный минимум и условный максимум будут зависеть от того, на какой высоте и под каким (негоризонтальным) углом осуществлён разрез.

Настало время облачить выкладки в математическое одеяние. Рассмотрим эллиптический параболоид , который имеет безусловный минимум в точке . Теперь найдём экстремум при условии . Данная плоскость параллельна оси , а значит, «высекает» из параболоида параболу . Вершина этой параболы и будет условным минимумом. Причём плоскость не проходит через начало координат, следовательно, точка останется не при делах. Не представили картинку? Срочно идём по ссылкам! Потребуется ещё много-много раз.

Вопрос: как найти этот условный экстремум? Простейший способ решения состоит в том, чтобы из уравнения (которое так и называют – условием или уравнением связи ) выразить, например: – и подставить его в функцию:

В результате получена функция одной переменной, задающая параболу, вершина которой «вычисляется» с закрытыми глазами. Найдём критические точки :

– критическая точка.

Далее проще всего использовать второе достаточное условие экстремума :

В частности: , значит, функция достигает минимума в точке . Его можно вычислить напрямую: , но мы пойдём более академичным путём. Найдём «игрековую» координату:
,

запишем точку условного минимума , удостоверимся, что она действительно лежит в плоскости (удовлетворяет уравнению связи) :

и вычислим условный минимум функции :
при условии («добавка» обязательна!!!) .

Рассмотренный способ без тени сомнения можно использовать на практике, однако, он обладает рядом недостатков. Во-первых, далеко не всегда понятна геометрия задачи, а во-вторых, зачастую бывает невыгодно выражать «икс» либо «игрек» из уравнения связи (если вообще есть возможность что-то выразить) . И сейчас мы рассмотрим универсальный метод нахождения условных экстремумов, получивший название метод множителей Лагранжа :

Пример 1

Найти условные экстремумы функции при указанном уравнении связи на аргументы .

Узнаёте поверхности? ;-) …Я рад видеть ваши счастливые лица =)

Кстати из формулировки данной задачи становится ясно, почему условие называют уравнением связи – аргументы функции связаны дополнительным условием, то есть найденные точки экстремума должны обязательно принадлежать круговому цилиндру.

Решение : на первом шаге нужно представить уравнение связи в виде и составить функцию Лагранжа :
, где – так называемый множитель Лагранжа.

В нашем случае и:

Алгоритм нахождения условных экстремумов весьма похож на схему отыскания «обычных» экстремумов . Найдём частные производные функции Лагранжа, при этом с «лямбдой» следует обращаться, как с константой:

Составим и решим следующую систему:

Клубок распутывается стандартно:
из первого уравнения выразим ;
из второго уравнения выразим .

Подставим в уравнение связи и проведём упрощения:

В результате получаем две стационарные точки. Если , то:

если , то:

Легко видеть, что координаты обеих точек удовлетворяют уравнению . Щепетильные люди могут выполнить и полную проверку: для этого нужно подставить в первое и второе уравнения системы, и затем сделать то же самое с набором . Всё должно «сойтись».

Проверим выполнение достаточного условия экстремума для найденных стационарных точек. Я разберу три подхода к решению данного вопроса:

1) Первый способ – это геометрическое обоснование.

Вычислим значения функции в стационарных точках:

Далее записываем фразу примерно такого содержания: сечение плоскости круговым цилиндром представляет собой эллипс, в верхней вершине которого достигается максимум, а в нижней – минимум. Таким образом, бОльшее значение – есть условный максимум, а меньшее – условный минимум.

По возможности лучше применять именно этот метод – он прост, и такое решение засчитывают преподаватели (большим плюсом идёт то, что вы показали понимание геометрического смысла задачи) . Однако, как уже отмечалось, далеко не всегда понятно, что с чем и где пересекается, и тогда на помощь приходит аналитическая проверка:

2) Второй способ основан на использовании знаков дифференциала второго порядка . Если окажется, что в стационарной точке , то функция достигает там максимума, если же – то минимума.

Найдём частные производные второго порядка :

и составим этот дифференциал:

При , значит, функция достигает максимума в точке ;
при , значит, функция достигает минимума в точке .

Рассмотренный метод очень хорош, но обладает тем недостатком, что в ряде случаев практически невозможно определить знак 2-го дифференциала (обычно так бывает, если и/или – разных знаков) . И тогда на помощь приходит «тяжёлая артиллерия»:

3) Продифференцируем по «икс» и по «игрек» уравнение связи:

и составим следующую симметричную матрицу :

Если в стационарной точке , то функция достигает там (внимание! ) минимума, если – то максимума.

Запишем матрицу для значения и соответствующей точки :

Вычислим её определитель :
, таким образом, функция имеет максимум в точке .

Аналогично для значения и точки :

Таким образом, функция имеет минимум в точке .

Ответ : при условии :

После обстоятельного разбора материала просто не могу не предложить вам пару типовых задач для самопроверки:

Пример 2

Найти условный экстремум функции , если её аргументы связаны уравнением

Пример 3

Найти экстремумы функции при условии

И вновь настоятельно рекомендую разобраться в геометрической сути заданий, особенно, это касается последнего примера, где аналитическая проверка достаточного условия – не подарок. Вспомните, какую линию 2-го порядка задаёт уравнение , и какую поверхность эта линия порождает в пространстве. Проанализируйте, по какой кривой цилиндр пересечёт плоскость и где на этой кривой будет минимум, а где – максимум.

Решения и ответы в конце урока.

Рассматриваемая задача находит широкое применение в различных областях, в частности – далеко ходить не будем, в геометрии. Решим всем понравившуюся задачу о поллитровке (см. Пример 7 статьи Экстремальные задачи ) вторым способом:

Пример 4

Каковы должны быть размеры консервной банки цилиндрической формы, чтобы на изготовления банки пошло наименьшее количество материала, если объем банки равен

Решение : рассмотрим переменный радиус основания , переменную высоту и составим функцию площади полной поверхности банки:
(площадь двух крышек + площадь боковой поверхности)

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

  • метод вариации постоянной (Лагранжа).

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

Метод вариации постоянной (Лагранжа)

В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

Рассмотрим уравнение:
(1)

Шаг 1 Решение однородного уравнения

Ищем решение однородного уравнения:

Это уравнение с разделяющимися переменными

Разделяем переменные - умножаем на dx , делим на y :

Интегрируем:

Интеграл по y - табличный :

Тогда

Потенцируем:

Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

Шаг 2 Заменим постоянную C на функцию

Теперь заменим постоянную C на функцию от x :
C → u(x)
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.

По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:

.
Подставляем в исходное уравнение (1) :
(1) ;

.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2) :
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.

Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

Решить уравнение

Решение

Решаем однородное уравнение:

Разделяем переменные:

Умножим на :

Интегрируем:

Интегралы табличные :

Потенцируем:

Заменим постоянную e C на C и убираем знаки модуля:

Отсюда:

Заменим постоянную C на функцию от x :
C → u(x)

Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.

an(t)z(n)(t) + an − 1(t)z(n − 1)(t) + ... + a1(t)z"(t) + a0(t)z(t) = f(t)

состоит в замене произвольных постоянных ck в общем решении

z(t) = c1z1(t) + c2z2(t) + ...

Cnzn(t)

соответствующего однородного уравнения

an(t)z(n)(t) + an − 1(t)z(n − 1)(t) + ... + a1(t)z"(t) + a0(t)z(t) = 0

на вспомогательные функции ck(t), производные которых удовлетворяют линейной алгебраической системе

Определителем системы (1) служит вронскиан функций z1,z2,...,zn, что обеспечивает её однозначную разрешимость относительно .

Если - первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

является решением исходного линейного неоднородного дифференциального уравнения. Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам.

Метод Лагранжа (метод вариации произвольных постоянных)

Метод для получения общего решения неоднородного уравнения, зная общее решение однородного уравнения без нахождения частного решения.

Для линейного однородного дифференциального уравнения n-го порядка

y(n) + a1(x) y(n-1) + ... + an-1 (x) y" + an(x) y = 0,

где y = y(x) - неизвестная функция, a1(x), a2(x), ..., an-1(x), an(x) - известные, непрерывные, справедливо: 1) существуют n линейно независимых решений уравнения y1(x), y2(x), ..., yn(x); 2) при любых значениях констант c1, c2, ..., cn функция y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) является решением уравнения; 3) для любых начальных значений x0, y0, y0,1, ..., y0,n-1 существуют такие значения c*1, c*n, ..., c*n, что решение y*(x)=c*1 y1(x) + c*2 y2(x) + ... + c*n yn (x) удовлетворяет при x = x0 начальным условиям y*(x0)=y0, (y*)"(x0)=y0,1 , ...,(y*)(n-1)(x0)=y0,n-1.

Выражение y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) называется общим решением линейного однородного дифференциального уравнения n-го порядка.

Совокупность n линейно независимых решений линейного однородного дифференциального уравнения n-го порядка y1(x), y2(x), ..., yn(x) называется фундаментальной системой решений уравнения.

Для линейного однородного дифференциального уравнения с постоянными коэффициентами существует простой алгоритм построения фундаментальной системы решений. Будем искать решение уравнения в виде y(x) = exp(lx): exp(lx)(n) + a1exp(lx)(n-1) + ... + an-1exp(lx)" + anexp(lx)= = (ln + a1ln-1 + ... + an-1l + an)exp(lx) = 0, т.е. число l является корнем характеристического уравнения ln + a1ln-1 + ... + an-1l + an = 0. Левая часть характеристического уравнения называется характеристическим многочленом линейного дифференциального уравнения: P(l) = ln + a1ln-1 + ... + an-1l + an. Таким образом, задача о решении линейного однородного уравнения n -го порядка с постоянными коэффициентами сводится к решению алгебраического уравнения.

Если характеристическое уравнение имеет n различных действительных корней l1№ l2 № ... № ln, то фундаментальная система решений состоит из функций y1(x) = exp(l1x), y2(x) = exp(l2x), ..., yn(x) = exp(lnx), и общее решение однородного уравнения имеет вид: y(x)= c1 exp(l1x) + c2 exp(l2x) + ... + cn exp(lnx).

ундаментальная система решений и общее решение для случая простых действительных корней.

Если какой-либо из действительных корней характеристического уравнения повторяется r раз (r-кратный корень), то в фундаментальной системе решений ему отвечают r функций; если lk=lk+1 = ... = lk+r-1, то в фундаментальную систему решений уравнения входят r функций: yk(x) = exp(lkx), yk+1(x) = xexp(lkx), yk+2(x) = x2exp(lkx), ..., yk+r-1(x) =xr-1 exp(lnx).

ПРИМЕР 2. Фундаментальная система решений и общее решение для случая кратных действительных корней.

Если характеристическое уравнение имеет комплексные корни, то каждой паре простых (имеющих кратность 1) комплексных корней lk,k+1=ak ± ibk в фундаментальной системе решений отвечает пара функций yk(x) = exp(akx)cos(bkx), yk+1(x) = exp(akx)sin(bkx).

ПРИМЕР 4. Фундаментальная система решений и общее решение для случая простых комплексных корней. Мнимые корни.

Если же комплексная пара корней имеет кратность r, то такой паре lk=lk+1 = ... = l2k+2r-1=ak ± ibk, в фундаментальной системе решений отвечают функции exp(akx)cos(bkx), exp(akx)sin(bkx), xexp(akx)cos(bkx), xexp(akx)sin(bkx), x2exp(akx)cos(bkx), x2exp(akx)sin(bkx), ................ xr-1exp(akx)cos(bkx), xr-1exp(akx)sin(bkx).

ПРИМЕР 5. Фундаментальная система решений и общее решение для случая кратных комплексных корней.

Таким образом, для отыскания общего решения линейного однородного дифференциального уравнения с постоянными коэффициентами следует: записать характеристическое уравнение; найти все корни характеристического уравнения l1, l2, ... , ln; записать фундаментальную систему решений y1(x), y2(x), ..., yn(x); записать выражение для общего решения y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x). Для решения задачи Коши нужно подставить выражение для общего решения в начальные условия и определить значения постоянных c1,..., cn, которые являются решениями системы линейных алгебраических уравнений c1 y1(x0) + c2 y2(x0) + ... + cn yn(x0) = y0, c1 y"1(x0) + c2 y"2(x0) + ... + cn y"n(x0) =y0,1, ......... , c1 y1(n-1)(x0) + c2 y2(n-1)(x0) + ... + cn yn(n-1)(x0) = y0,n-1

Для линейного неоднородного дифференциального уравнения n-го порядка

y(n) + a1(x) y(n-1) + ... + an-1 (x) y" + an(x) y = f(x),

где y = y(x) - неизвестная функция, a1(x), a2(x), ..., an-1(x), an(x), f(x) - известные, непрерывные, справедливо: 1) если y1(x) и y2(x) - два решения неоднородного уравнения, то функция y(x) = y1(x) - y2(x) - решение соответствующего однородного уравнения; 2) если y1(x) решение неоднородного уравнения, а y2(x) - решение соответствующего однородного уравнения, то функция y(x) = y1(x) + y2(x) - решение неоднородного уравнения; 3) если y1(x), y2(x), ..., yn(x) - n линейно независимых решений однородного уравнения, а yч(x) - произвольное решение неоднородного уравнения, то для любых начальных значений x0, y0, y0,1, ..., y0,n-1 существуют такие значения c*1, c*n, ..., c*n, что решение y*(x)=c*1 y1(x) + c*2 y2(x) + ... + c*n yn (x) + yч(x) удовлетворяет при x = x0 начальным условиям y*(x0)=y0, (y*)"(x0)=y0,1 , ...,(y*)(n-1)(x0)=y0,n-1.

Выражение y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) + yч(x) называется общим решением линейного неоднородного дифференциального уравнения n-го порядка.

Для отыскания частных решений неоднородных дифференциальных уравнений с постоянными коэффициентами с правыми частями вида: Pk(x)exp(ax)cos(bx) + Qm(x)exp(ax)sin(bx), где Pk(x), Qm(x) - многочлены степени k и m соответственно, существует простой алгоритм построения частного решения, называемый методом подбора.

Метод подбора, или метод неопределенных коэффициентов, состоит в следующем. Искомое решение уравнения записывается в виде: (Pr(x)exp(ax)cos(bx) + Qr(x)exp(ax)sin(bx))xs, где Pr(x), Qr(x) - многочлены степени r = max(k, m) с неизвестными коэффициентами pr , pr-1, ..., p1, p0, qr, qr-1, ..., q1, q0. Сомножитель xs называют резонансным сомножителем. Резонанс имеет место в случаях, когда среди корней характеристического уравнения есть корень l =a ± ib кратности s. Т.е. если среди корней характеристического уравнения соответствующего однородного уравнения есть такой, что его действительная часть совпадает с коэффициентом в показателе степени экспоненты, а мнимая - с коэффициентом в аргументе тригонометрической функции в правой части уравнения, и кратность этого корня s, то в искомом частном решении присутствует резонансный сомножитель xs. Если же такого совпадения нет (s=0), то резонансный сомножитель отсутствует.

Подставив выражение для частного решения в левую часть уравнения, получим обобщенный многочлен того же вида, что и многочлен в правой части уравнения, коэффициенты которого неизвестны.

Два обобщенных многочлена равны тогда и только тогда, когда равны коэффициенты при сомножителях вида xtexp(ax)sin(bx), xtexp(ax)cos(bx) с одинаковыми степенями t. Приравняв коэффициенты при таких сомножителях, получим систему 2(r+1) линейных алгебраических уравнений относительно 2(r+1) неизвестных. Можно показать, что такая система совместна и имеет единственное решение.