Основные характеристики кристаллических структур. Строение кристаллов Сколько типов кристаллических структур различают

Наиболее обширной группой кристаллов являются тела, построенные из молекул. Достаточно представителей имеют и ионные соединения. В этих случаях, как мы уже говорили, представление о кристалле как о плотно уложенных частицах вполне оправдано. Однако необходимо остановиться на тех структурах, где направленности связей между атомами, отклонение электронного облака от сферической симметрии и прочее являются причиной образования структур, которые не могут уже рассматриваться столь просто.

К таким исключениям принадлежат структуры атомов, связанных общими электронами.

У большого числа металлов наблюдаются структуры с объемно-центрированной кубической ячейкой. В этих кристаллах каждый атом будет иметь восемь соседей, а не двенадцать, как в плотнейшей упаковке шаров. Так ведут себя, например, атомы железа (рис. 257). Решетка железа - кубическая; атомы железа расположены в вершинах и центрах кубов. Такой же структурой обладают литий, калий, цезий и ряд других веществ.

На рис. 263 структура кристаллической ртути сравнивается с идеальной кубической плотнейшей упаковкой. Легко видеть, что характер расположения центров атомов одинаков, но в структуре

ртути расстояния между слоями уменьшились, а расстояния между атомами одного слоя возросли, как будто бы мы плотно упаковали слегка сплющенные шары.

Примеров таких в большей или меньшей степени «испорченных» шготнейших упаковок очень много. Например, в случае льда (рис. 264) родство с шаровой упаковкой теряется полностью. Связь между каждой парой атомов кислорода осуществляется одним атомом водорода. В этих четырех связях каждый атом водорода приходится на два атома кислорода - противоречия с химической формулой воды изображенная на рис. 264 структура, конечно, не имеет. Для наглядности «водородная» связь на рисунке изображена в виде «перешейка». Структура льда очень рыхлая, на рисунке заметны большие «дыры». Если мысленно продолжить структуру над плоскостью чертежа, то эти дыры превратятся в широкие каналы, пронизывающие структуру.

Структура льда - важное исключение из общего правила. Это не значит, что редкими являются случаи, когда уподобление кристалла плотной упаковке частиц теряет свой смысл.

Как мы уже говорили выше, полностью теряется аналогия с плотной упаковкой шаров в случае кристаллов, построенных из атомов, связанных общими электронами.

Структура сульфида цинка, показанная выше на рис. 257, очень характерна. Так же выглядят и структуры некоторых элементов: углерода (алмаз), кремния, германия, олова (белого).

Возможны случаи, когда гомеополярные связи образуют слои и цепи атомов.

На рис. 265 изображена структура графита. Атомы углерода в графите образуют слоевую структуру. Но это не слои плотнейшей упаковки. Построить слой графита из соприкасающихся сфер нельзя. У графита слои сильно связанных атомов - плоские. Мышьяк и фосфор также дают слоистые в этом смысле структуры, но атомы слоя расположены не в одной плоскости. В качестве примера

структуры, состоящей из цепочек сильносвязанных атомов, можно привести серый селен. Каждый атом этого вещества крепко связан лишь с двумя соседями. У серого селена атомы образуют бесконечную спираль, навивающуюся на прямую линию. Расстояния между атомами соседних спиралей значительно больше расстояния между ближайшими атомами, входящими в одну и ту же спираль.

Черный матовый мягкий графит, которым мы пишем, и блестящий прозрачный твердый, режущий стекло алмаз построены из одних и тех же атомов - из атомов углерода. На этом примере с исключительной отчетливостью видно, как резко определяются свойства кристаллов взаимным расположением атомов. Из графита делают огнеупорные тигли, выдерживающие температуру до 2000-3000 °С, а алмаз горит при температуре выше 700 °С; удельный вес алмаза 3,5, а графита 2,1; графит проводит электрический ток, алмаз - нет, и т. д.

Эта особенность образовывать разные кристаллы присуща не только одному углероду. Почти каждый химический элемент в кристаллическом состоянии и любое вещество существуют в нескольких разновидностях. Нам известно шесть разновидностей льда, девять разновидностей серы, четыре разновидности железа.

При комнатной температуре атомы железа образуют кубическую решетку, в которой атомы занимают места по вершинам и в центре кубов; каждый атом имеет восемь соседей. При высокой температуре атомы железа образуют плотнейшую упаковку: каждый атом имеет двенадцать соседей. Железо с числом соседей восемь - мягкое, железо с числом соседей двенадцать - твердое. Закалка стали фиксирует при комнатной температуре плотнейшую кубическую упаковку, устойчивую при более высоких температурах.

Уже из примеров углерода и железа видно, что разновидности кристаллов одного и того же вещества совершенно не похожи друг на друга по структуре. То же относится и к другим веществам.

Так, например, желтая сера образует в кристалле гофрированные кольца из восьми атомов. Иначе говоря, в кристалле видна молекула серы из восьми атомов. Красная сера тоже состоит из таких колец, однако повернуты они друг к другу совсем иначе.

Желтый фосфор дает кубическую структуру с числом ближайших соседей, равным восьми. Черный фосфор - слоистая структура типа графита.

Серое олово имеет структуру такую же, как алмаз. Белое олово можно мысленно получить из серого, если сильно сжать алмазную структуру вдоль оси куба. В результате этого сплющивания число ближайших соседей у атома олова становится равным шести вместо четырех.

У органических веществ также часто встречаются кристаллические разновидности. Те же самые молекулы располагаются по-разному одна по отношению к другой.


КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА , расположение атомов кристаллич. в-ва в пространстве. наиб. характерное св-во кристаллической структуры - трехмерная периодичность (см. Кристаллическое состояние). Обычно, говоря о кристаллической структуре, подразумевают среднее во времени расположение атомных ядер (т. наз. статич. модель); более полная информация включает сведения об амплитудах и частотах колебаний атомов (динамич. модель), а также о распределении электронной плотности в межъядерном пространстве. Изучение кристаллических структур и их связи со св-вами в-в составляет предмет кристаллохимии . Геом. характеристики кристаллической структуры, данные о распределении электронной плотности , амплитуды колебаний атомов (точнее, среднеквадратичные смещения от положений равновесия) находят с помощью дифракционных методов исследования (рентгеноструктурного анализа, нейтронографии и электронографии кристаллов), частоты колебаний - методами спектроскопии (ИК, комбинац. рассеяния, неупругого рассеяния нейтронов). Моделирование кристаллической структуры. Идеальная кристаллическая структура характеризуется бесконечной пространств. решеткой, т.е. состоит из идентичных элементарных ячеек. Последние имеют форму параллелепипедов со сторонами а, b, с и углами a , b , g (параметры решетки) и соприкасаются целыми гранями. В реальных кристаллах кристаллическая структура всегда искажена дефектами , а также наличием пов-сти кристалла . Иногда вместо термина "кристаллическая структура" употребляют термин "кристаллич. решетка"; предпочтительнее, однако, придавать последнему иное содержание (см. Кристаллы). Чтобы описать статич. модель кристаллической структуры, необходимо указать ее симметрию , выражаемую одной из пространственных (федоровских) групп, параметры решетки и координаты атомных ядер в ячейке; эти данные позволяют вычислить межатомные расстояния и валентные углы . Первичная трактовка такой модели при наличии между атомами ковалентных связей состоит в том, что атомы соединяют валентными штрихами в соответствии с классич. теорией хим. строения. Межатомные расстояния указывают правильный способ проведения валентных штрихов: обычно расстояние А - В, соответствующее ковалентной связи , существенно короче, чем кратчайшее расстояние между валентно не связанными атомами А и В. Если ковалентные связи отсутствуют (превалируют ионные, металлич. или ван-дер-ваальсовы межатомные взаимод.), модель кристаллической структуры представляют в виде плотной упаковки , образованной шарами одинакового размера (простые в-ва) или шарами неск.

Рис. 1. Эллипсоиды тепловых колебаний атомов в структуре m -ацетилен-бис(циклопентадиенникеля) при 300 К (а) и 77 К (6). В центре молекула ацетилена , по бокам - молекулы циклопентадиена.

сортов (напр., анионы образуют упаковку, катионы располагаются в ее пустотах). Учет трехмерного распределения электронной плотности р в пространстве декартовых координат х, у, z приводит к модели кристаллической структуры, согласно к-рой атомные ядра "погружены" в непрерывно распределенный с плотностью р электронный заряд. Совр. прецизионный рентгеноструктурный анализ позволяет экспериментально изучать особенности ф-ции r (х, у, z) и определять изменение электронной плотности атомов в кристалле в сравнении с электронной плотностью r 0 валентно не связанных атомов , получаемой в результате квантовохим. расчетов. Эти данные м. б. полезны для установления областей локализации валентных и неподеленных электронных пар , для обнаружения переноса заряда и др. особенностей строения в-в с ковалентными связями , а также в-в, в к-рых направленные межатомные взаимод. отсутствуют. Для отражения динамики атомов в кристаллической структуре в гармонич. приближении атомы изображают в виде "тепловых эллипсоидов", к-рые имеют след. физ. смысл: с фиксир. вероятностью р в любой момент времени атомное ядро находится внутри или на пов-сти такого эллипсоида (рис. 1). Направление наиб. вытянутости эллипсоида соответствует направлению, в к-ром атом совершает максимальные по амплитуде колебания, направление наиб. сжатия соответствует минимальным по размаху колебаниям. Обычно производят нормировку на вероятность р= 1 / 2 . При данной р размеры эллипсоидов зависят от т-ры. Чтобы количественно охарактеризовать форму и ориентацию атомных тепловых эллипсоидов, для каждого атома указывают 6 независимых компонентов симметричного тензора 2-го ранга, значения к-рых определяют по данным рентгеноструктурного исследования. Описанная динамич. модель не дает сведений о мгновенной структуре кристалла и о последоват. смене мгновенных структур. Информацию такого рода можно получить из спектров неупругого рассеяния нейтронов . Классификация кристаллических структур. В принципе каждому кристаллич. в-ву присуща своя структура. Однако часто разные в-ва имеют кристаллические структуры, одинаковые с точностью до подобия (т. наз. изоструктурность). Иногда такие в-ва способны образовывать смешанные кристаллы (см. Изоморфизм). С др. стороны, одно и то же хим. соед. в разных термодинамич. условиях и при разных способах получения может иметь разные кристаллические структуры (см. Полиморфизм). Кристаллические структуры очень многообразны - от простых (напр., у алмаза) до чрезвычайно сложных (напр., у бора). Изучены кристаллические структуры неск. десятков тысяч в-в, включая белки и др. сложные прир. соед. Для неск. сотен кристаллич. в-в (как неорг., так и орг.) изучено распределение электронной плотности в кристаллах . К ристаллические структуры делят нагомодесмические (координационные) и гетеродесмические. В первых все атомы соединены одинаковыми хим. связями, образующими пространств. каркас (напр., алмаз , галогениды щелочных металлов). Для вторых характерно наличие структурных фрагментов, внутри к-рых атомы соединены наиб. прочными (чаще всего ковалентными) связями; атомы , принадлежащие разл. фрагментам, связаны существенно слабее. Фрагменты могут представлять собой конечные группировки атомов ("острова"), цепи, слои, каркасы; соотв. выделяют островные, цепочечные, слоистые и каркасные кристаллические структуры. Островными кристаллическими структурами обладают почти все орг. соед., а также галогены , О 2 , S, (NH 4) 2 SO 4 и др. Роль островов играют молекулы (см. Молекулярные кристаллы) или многоатомные ионы . Цепочечную кристаллическую структуру имеет, напр., одна из модификаций Se, в к-рой атомы связаны в бесконечные спирали . Слоистое строение имеют графит , BN, MoS 2 и др. Пример каркасной кристаллической структуры - кристаллы СаТiO 3: атомы Ti и О, соединенные ковалентными связями , образуют ажурный каркас, в полостях к-рого расположены атомы Са. Известны кристаллические структуры, в к-рых сосуществуют структурные фрагменты разных типов. Так, кристаллы комплексного соед. N(CH 3) 4 построены из "островов" - ионов N(CH 3) 4 и цепей, образованных атомами Мn, связанными мостиковыми атомами Cl. Часто встречаются кристаллические структуры с неполной упорядоченностью, в к-рых отдельные атомы или структурные фрагменты статистически занимают неск. возможных положений (напр., статистич. наложение слоев в CdI 2). В нек-рых кристаллических структурах при достаточно высокой т-ре отдельные группы атомов или даже целые молекулы находятся в состоянии почти свободного или заторможенного вращения. По характеру связи между атомами или структурными фрагментами различают ковалентные кристаллы , ионные кристаллы , металлические кристаллы и ван-дер-ваальсовы кристаллы . Последняя группа включает, в частности, молекулярные кристаллы . Это деление (как и деление хим. связи на типы) условно, однако типичные представители разных групп резко различаются по св-вам, напр. по энергии структуры (энергия, необходимая для разъединения

Лекция 10

Структура твердых тел. Принципы описания кристаллических структур

Большая часть окружающих нас веществ находится в твердом состоянии. Некоторые твердые тела обладают блеском и поддаются деформации в холодном состоянии ‑ их относят к металлам. Другие представляют собой кристаллы с правильными кристаллическими гранями и четкими плоскостями скалывания, некоторые из них относят к солям, или ионным кристаллам, а некоторые ‑ к ковалентным кристаллам. Ряд других твердых тел мягки и сохраняют многие свойства молекул газа, из которого они сконденсировались, ‑ это молекулярные кристаллы.

Наблюдаемая кристаллическая структура твердых тел (расположение атомов в элементарной ячейке) определяется положением минимума энергии системы как функции координат центров атомов. В общем случае эта минимизация требует проведения квантовохимических расчетов для набора возможных положений атомов и, таким образом, является довольно сложной математической процедурой. Однако в ряде случаев (при ненаправленных ненасыщаемых силах межатомных взаимодействий ‑ в чисто ионных, ван-дер-ваальсовых или металлических кристаллах) описание структуры кристаллов может быть существенно упрощено, если рассматривать атомы как жесткие шары с определенными (характерными для данного атома в данном зарядовом состоянии при данном типе межатомного взаимодействия) радиусами. Такой подход при своей очевидной приближенности, как было показано ранее, для кристаллов с ионной и ван-дер-ваальсовой связями может быть оправдан резким возрастанием энергии взаимного отталкивания при сближении атомов до состояния заметного перекрывания электронных оболочек и малостью этой энергии на больших межатомных расстояниях.


Твердые тела в отличие от жидких и газообразных характеризуются сопротивлением сдвиговым деформациям, что позволяет веществу сохранять форму под действием внешних сил. Указанная особенность тесно связана с дальнодействующей природой межатомного взаимодействия, приводящего к упорядоченному расположению частиц (атомов, молекул или ионов), из которых составлено твердое тело. Максимальная степень порядка - дальний порядок, т. е. строго периодическое повторение правильного расположения частиц в любой точке твердого тела, реализуется в кристаллах, тогда как аморфным твердым телам присущ лишь ближ ний порядок ‑ закономерное расположение частиц на расстояниях, не превышающих нескольких межатомных. Как следствие, переход аморфных твердых тел в жидкое состояние в отличие от кристаллов совершается непрерывно, и в этом смысле аморфные тела (например, стекла) иногда рассматривают как переохлажденные жидкости.

Рассмотрим три класса веществ: молекулярные кристаллы, ковалентные кристаллы и металлы.

На рисунке 1 показано, к какому из этих классов относятся кристаллы элементов периодической системы. Имеется лишь 15 элементов, которые, несомненно, дают молекулярные кристаллы (в верхней правой части таблицы), и около 70 элементов металлов (слева в таблице). Между металлами и молекулярными кристаллами находятся элементы, которые включают ковалентные кристаллы, а также некоторые твердые тела, которые трудно отнести к определенному классу. Некоторые элементы (например, мышьяк и сурьма) имеют как молекулярные, так и металлические формы. Фосфор также дает и ковалентные и молекулярные кристаллы. Эти пограничные элементы особенно важны благодаря своему промежуточному характеру, и мы уделим им особое внимание.

Соединения двух различных неметаллов всегда образуют молекулярные или ковалентные кристаллы. Соединение металла и неметалла обычно образует ионный или ковалентный кристалл. Два металла могут образовывать одно и более металлических соединений или (что бывает чаще) целый ряд металлических растворов, где один элемент растворен в другом.

Закономерности строения неметаллических кристаллов описывает правило (8- N ) Юм-Розери, согласно которому координационное число атома (количество связей, которыми атом связан с ближайшими атомами) КЧ= 8 ‑ N , где N ‑ номер группы в короткопериодном варианте таблицы Менделеева.

Поскольку в основе правила лежат представления об устойчивости электронного октета и электронной паре, осуществляющей единичную ковалентную связь, то правило справедливо лишь для элементов главных подгрупп начиная с IV группы.

Например, в кристаллах элементов 6-й группы (S, Se) КЧ =8 - 6=2; таким образом, в структуре будут присутствовать или кольцевые молекулы (S8 в ромбической и моноклинной сере), или длинные полимерные цепи (S¥ в пластической сере и в селене). Атомы в кольцах и цепях связаны между собой ковалентными связями, а между цепями и кольцами действуют ван-дер-ваальсовы силы.

Для кристаллов элементов VII группы КЧ=8-7=1, что приводит к кристаллу, состоящему из двухатомных молекул, например I2. Атомы в молекуле связаны ковалентной связью, а молекулы объединены в кристалл ван-дер-ваальсовыми силами.


Однако далеко не все элементарные кристаллы имеют молекулярный тип связи. Видно, что только в случае элементов IV главной подгруппы (более точно у С, Si, Ge) могут образовываться кристаллы с исключительно ковалентной связью, поскольку координационного числа 4, которое выводится из правила 8 ‑ N , достаточно, чтобы связать все атомы кристалла трехмерной сеткой ковалентных связей. Главная особенность таких элементарных кристаллов ‑ склонность к полиморфизму и, как следствие, многообразие проявляемых ими свойств (рисунок 2). Стабильные модификации указанных элементов - ковалентные кристаллы с высокими значениями механических характеристик (модуля Юнга, модуля сдвига, прочности, твердости), а также высокими температурами плавления и кипения. Типичный пример: кремний, в кристаллической решетке которого (ее еще называют алмазной решеткой) каждый атом, находящийся в состоянии sp3-гибридизации, окружен тетраэдром из соседних атомов кремния. Подобная жесткая трехмерная сетка тетраэдрических связей обеспечивает высокую устойчивость кристаллической решетке. Кристаллический кремний имеет высокую температуру плавления (1420 °С) и кипения (ЗЗ00 °С), исключительную прочность и химическую стойкость (нерастворим в воде и растворах кислот).

Мы уже сказали, что большинство простых и сложных веществ в обычных условиях представляют собой твердые тела. Одной из важнейших задач химии твердого тела является установление взаимосвязи структуры твердых тел с их свойствами.

Напомню, что кристаллическая структура – это конкретное расположение атомов в кристалле. Это расположение усреднено по времени и пространству и отвечает среднестатистическим максимумам электронной или ядерной плотности кристалла.

Идеализированная математическая форма расположения атомов в кристалле, описанная набором атомных позиций в рамках кристаллической решетки и одной из 230 пространственных групп симметрии, соответствует идеальной структуре. Различают полностью упорядоченные структуры, в которых каждая атомная позиция нацело заселена атомами одного сорта, и разупорядоченные структуры, где присутствуют атомные позиции, не полностью заселенные односортными атомами. Разные аспекты кристаллической структуры рассматривают в рамках различных моделей структуры. Локальные особенности микроструктуры кристалла отвечают реальной структуре. Экспериментально кристаллическую структуру определяют методами структурного анализа.

Кристаллическая структура (внутреннее строение) обуславливает многогранную форму кристалла (внешнее строение).

Кристалл – твердое тело, отличающееся присутствием как ближнего, так и дальнего порядка. Это равновесная форма твердого состояния вещества.

Для всех без исключения кристаллов характерно решетчатое строение. Чтобы представить себе такую решетку, мысленно заполни пространство множеством равных параллелепипедов, параллельно ориентированных и соприкасающихся по целым граням. Простейший пример такой постройки представляет кладка из кирпичиков, вплотную приложенных друг к другу. Если внутри каждого параллелепипеда выделить соответственные точки (например, их центры тяжести или вершины), мы получим модель пространственной решетки. В конкретных кристаллических структурах места узлов пространственной решетки могут заполнять отдельные атомы или ионы, или же группы атомов – молекулы. Прямые линии, по которым расположены частицы в решетке, называются рядами, а плоскости, усаженные частицами, называются плоскими сетками . Плоские сетки, ряды, вершины соответствуют граням, ребрам кристалла.

Кристаллическая решетка – это трехмернопространственное расположение материальных частиц (атомов, ионов, молекул), слагающих кристалл.

Условно эквивалентность координатных направлений можно показать в виде единичных векторов – масштабов а, в, с – по соответствующим координатным осям X, Y, Z.

Три возможности соотношения единичных векторов – а = в = с, а = в ≠ с, а ¹ в ¹ с – позволяют разделить кристаллографические координатные системы на три группы – три категории кристаллов :

· кристаллы высшей категории (а = в = с) характеризуются полной эквивалентностью координатных осей, что связано с присутствием в группах симметрии таких кристаллов нескольких осей высшего порядка;

· кристаллы средней категории (а = в ≠ с) характеризуются частичной эквивалентностью координатных осей, связанной с присутствием в их группах лишь одной оси высшего порядка;

· кристаллы низшей категории (а ≠ в ≠ с) характеризуются полной неэквивалентностью координатных направлений, которая объясняется отсутствием в них осей высшего порядка.

Рассмотрев угловые соотношения в каждой из перечисленных категорий, можно вывести все кристаллографические координатные системы (сингонии).

Классы симметрии с единым координатным репером объединяются в семейство, называемое сингонией, или системой.

Всего существует 32 различные кристаллографические точечные группы, в которые входят разные комбинации закрытых операций симметрии. Эти точечные группы классифицированы по их принадлежности к кристаллографическим системам.

Кристаллографическая

Соотношения между ребрами элементарной ячейки

Точечные группы

Триклинная

а ≠ в ≠ с

a ≠ b ≠ g ≠ 90°

Моноклинная

а ≠ в ≠ с

a = b = 90° ≠ g

2, (только в одном направлении вдоль оси Z). m

Ортогональная (орторомбическая)

а ≠ в ≠ с

a = b = g = 90°

Тетрагональная

a = b = g = 90°

4, , 4/m, 422, 4mm, 2m, 4/mmm (ось 4-го порядка проходит только вдоль оси Z)

Тригональная и гексагональная

6, , 6/m, 622, 6mm, m2, 6/mmm (ось 3-го (6-го) порядка проходит только вдоль оси Z)

Кубическая

a = b = g = 90°

23, m3, 432, 4m, m3m (4 оси 3-го порядка проходят по объемным диагоналям элементарной ячейки)

Система эквивалентных позиций – это совокупность точек, которые переводятся друг в друга элементами симметрии данной точечной группы.

Число точек, входящих в данную СЭП, называется кратностью системы или кратностью позиций. Или – кратность – это число точек, получаемых размножением их элементами симметрии.

Позиция называется частной , если точка расположена на каком-либо элементе симметрии: на оси, на плоскости симметрии, в особой точке инверсии, в центре симметрии.

Позиция называется общей , если точка не находится на элементе симметрии.

Атомы в кристалле могут быть связаны не только закрытыми элементами симметрии, но и открытыми элементами симметрии.

Совокупность трех некомпланарных векторов называют трансляционной группой или решеткой кристалла.

Векторы а, b , с называют векторами переноса или трансляциями, а их модули – периодами идентичности решетки.

Параллелепипед, построенный на векторах а, b , с, называют параллелепипедом повторяемости решетки.

Составляющими элементами решетки являются ее узлы, узловые ряды и узловые сетки.

Пространственная решетка – это геометрический образ, отражающий трехмерную периодичность распределения атомов в структуре кристалла.

Решетка задается по какому-нибудь одному сорту атомов.

Чтобы задать решетку, нужно выбрать параллелепипед, который бы наиболее полно отражал все особенности данной решетки, являясь ее минимальным звеном, т. е. нужно выбрать элементарную ячейку.

Элементарная ячейка – параллелепипед повторяемости, построенный на кратчайших трансляциях вдоль кристаллографических систем координат.

Три возможных соотношения векторов – a = b = c , a = b ¹ c , a ¹ b ¹ c – позволяют разделить кристаллографические координатные системы, а следовательно, и 32 класса симметрии на три категории кристаллов:

1. кристаллы низшей категории (a ¹ b ¹ c ) характеризуются полной неэквивалентностью координатных направлений, которая объясняется отсутствием в них осей высшего порядка. Из условия неэквивалентности координатных направлений следует, что к низшей категории относятся только классы, не имеющий осей высшего порядка..gif" width="13" height="20 src=">) или полное отсутствие элементов симметрии (1).

2. кристаллы средней категории (a = b ¹ c ) характеризуются частичной эквивалентностью координатных осей, связанной с присутствием в их группах симметрии лишь одной оси высшего порядка. Из условия эквивалентности двух горизонтальных направлений (a = b) следует, что симметрия кристаллов средней категории описывается группами с единственной осью высшего порядка: . С этой осью совмещают вертикальную координатную ось z , а две другие – x и y – выбирают в плоскости, перпендикулярной главной оси. Поэтому углы между главной осью и осями x и y прямые, т. е. a = b = 90°. Угол g между осями x и y определяется порядком главной оси и равен 90° в случае присутствия оси 4-го порядка и 120° ‑ в случае осей 3-го и 6-го порядков. Поэтому в средней категории выделяют две координатные системы, которым соответствуют две сингонии.

3. кристаллы высшей категории (a = b = c ) характеризуются полной эквивалентностью координатных осей, что связано с присутствием в их группах симметрии нескольких осей высшего порядка.

Итак, на этих трех трансляциях можно построить элементарный параллелепипед – элементарную ячейку. Параметры a , b , c , a , b , g - параметры элементарной ячейки.

Напомню правила выбора элементарной ячейки (правила выбора кристаллографических осей координат) .

1. Выбранная ячейка должна иметь симметрию решетки.

2. Кристаллографические оси направлены вдоль узловых рядов.

3. Кристаллографические оси координат совмещают с особыми направлениями, т. е. с осями симметрии 2-го порядка и выше (при наличии таковых).

4. При прочих равных условиях элементарная ячейка должна иметь минимальный объем.

Если в трехмерном пространстве выбрать какую-либо точку (не обязательно материальную) и посчитать ее одним из узлов решетки, то в остальных ее узлах окажутся все точки этого пространства, идентичные (физически и геометрически) исходной.

В этом смысле решетка это выразитель кристаллического состояния вещества , ибо любое кристаллическое вещество, даже лишенное каких-либо иных элементов симметрии, всегда обладает этим основным элементом симметрии ‑ решеткой, или решетчатым строением.

Как и всякая параллелепипедальная система, трехмерная решетка обладает рядом собственных симметрийных особенностей. Она всегда центросимметрична, при этом центры инверсии находятся как в узлах решетки ‑ в вершинах параллелепипедов, так и на серединах расстояний между ними. Оси высших порядков неизбежно сопровождаются пересекающимися вдоль них плоскостями симметрии. Сами же оси симметрии ограничены только кристаллографическими порядками, т. е. n = 1, 2, 3, 4, 6. Последнее условие однозначно выбирает из бесконечного числа точечных групп, описывающих симметрию конечных исходных фигур, лишь 32 кристаллографические точечные группы.

Точечные группы симметрии решетки как геометрического образа отвечают старшему - голоэдрическому - классу каждой сингонии .

Трехмерная решетка может быть представлена тремя некомпланарными трансляционными векторами, а значит построенный на этих векторах параллелепипед ‑ параллелепипед повторяемости ‑ будет ячейкой решетки . Для того чтобы параллелепипед мог служить характеристической ячейкой какой-либо решетки, т. е. отражал бы ее главные симметрийные особенности, необходимо, чтобы его ребра (трансляционные векторы) совпали с особыми направлениями максимальной симметрии, т. е. с направлениями кристаллографических координатных осей. Ячейку, выбранную таким образом, называют ячейкой Браве или элементарной ячейкой . Тип и симметрия ячейки отражаются в ее названии, которое она передает и соответствующей ей пространственной решетке (рисунок 3). Поскольку форму ячейки Браве определяет координатный репер, семь разных по симметрии решеток (, , mmm, https://pandia.ru/text/80/189/images/image013_92.gif" width="46" height="41 src=">.gif" width="14" height="19 src=">m ) могут быть представлены шестью типами параллелепипедов (ибо гексагональные решетки обслуживаются одним и тем же координатным репером, а значит, и одинаковыми по форме ячейками Браве ‑ параллелепипедами со 120-градусным ромбом в основании).

Чтобы охарактеризовать тип решетки, необходимо и достаточно указать два ее признака:

1. кристаллографическую систему;

2. тип «центрирования» ячейки.

Элементарные ячейки могут быть:

1. примитивными – узлами являются лишь вершины ячейки;

2. центрированными – есть дополнительные узлы, не лежащие в вершинах ячейки.

Рисунок 3 – Типы решеток Бравэ

Если кристаллографические оси выбраны правильно, то дополнительные узлы возможны не в любом месте, а только в строго определенных позициях. При этом число возможных вариантов невелико. Непримитивные решетки называются центрированными.

Непримитивные (центрированные) решетки могут быть типа:

I ‑ объемноцентрированная (узел находится в центре объема)

С (А, В) – базоцентрированная (центрированы две противоположные грани)

F – гранецентрированная (дополнительные узлы находятся в центрах всех граней)

R – дважды объемноцентрированная (два дополнительных узла делят объемную диагональ на три равные части)

Правила, определяющие выбор координатных систем в группах разных кристаллографических систем (сингоний), по-разному ограничивают и способы центровки их решеток.

Для описания симметрии кристаллических структур пользуются понятием «пространственная группа».

Совокупность элементов симметрии кристаллической структуры называется пространственной группой.

Описать структуру это значит указать:

2) тип решетки Бравэ;

3) тип химической формулы;

4) КЧ и координационные полиэдры;

5) число формульных единиц и т. д.

6) характеристику структуры по типу химической связи;

7)характеристику структуры по геометрическому признаку;

8) структуру в терминах ПШУ-ПШК;

9) базисные координаты атомов;

10) пространственную группу и структурный тип.

Структура металлов наряду со структурой неметаллических элементарных кристаллов представлена на рисунке 4.

В нижней строчке каждого квадрата указана форма, стабильная при комнатной температуре, а выше следуют формы, реализующиеся при более высоких температурах.

Аббревиатура ГЦК обозначает гранецентрированную кубическую структуру с плотнейшей упаковкой атомов, ОЦК ‑ объемно-центрированную кубическую структуру, ГПУ ‑ гексагональную структуру с плотнейшей упаковкой атомов.

Структуры ГЦК и ГПУ нагляднее всего описываются в рамках модели плотнейших шаровых упаковок (ПУ), впервые предложенной в 1926 г. В. Гольдшмидтом. Атомы представляются в виде жестких шаров, и в плоскости имеется единственный вариант их плотного расположения (рисунок 5 а).

Если второй слой поместить так, что его шары окажутся расположенными в углублениях первого слоя, то плотнейшая упаковка достраивается, причем также единственно возможным способом (рисунок 5 б). Что касается шаров третьего слоя, то их можно расположить двумя способами:

1) шары третьего слоя над шарами первого, шары четвертого над шарами второго и т. д., так что чередующиеся слои соответствуют последовательности АВАВАВАВ (где буквы А и В обозначают плотноуложенные слои, сдвинутые друг относительно друга в горизонтальной плоскости), а способ укладки отвечает гексагональной плотнейшей упаковке (ГПУ) (рисунок 6, а);

2) шары третьего слоя по отношению к шарам второго слоя расположены так, что не находятся над шарами первого слоя.

Тогда четвертый слой повторяет первый, второй повторяет пятый и т. д. Чередование слоев соответствует АВСАВС... ABC, а способ укладки отвечает кубической плотнейшей упаковке (ГЦК) (рисунок 6, б). В структуре ГПУ упаковки шаров в плоскости слоя и по вертикали к нему различны, а в структуре ГЦК упаковка одинакова в любой из трех основных плоскостей куба (т. е. менее анизотропна). Несмотря на различия, эти два типа плотнейших шаровых упаковок демонстрируют общие черты:

1) доля пространства, занятого шарами, ‑ коэффициент заполнения, в обоих случаях равен 74,05%;

2) координационное число атома составляет 12;

3) в обеих упаковках имеется два типа пустот ‑ тетраэдрические, образованные четырьмя соприкасающимися шарами, и октаэдрические, соответственно образованные шестью шарами; в тетраэдрическую пустоту может поместиться шарик с радиусом r тетр = 0,225 r , а в октаэдрическую шарик с радиусом r окт =0,414 r , где r - радиус шаров, из которых составлена плотнейшая упаковка;

4) в плотнейших упаковках в расчете на один шар приходится одна октаэдрическая и две тетраэдрических пустоты.

В концепции плотнейших упаковок полиморфизм рассматривается как отличный от ГЦК и ГПУ порядок чередования плотноупакованных слоев.

В качестве примера можно привести последовательность слоев в четырехслойной гексагональной упаковке...АВСВАВСВ... (обозначается как 4Н).

Из шаровых упаковок с меньшей плотностью наиболее часто встречается объемноцентрированная кубическая упаковка (ОЦК), для которой коэффициент заполнения составляет 68,01%.

Упаковку этого типа можно получить, если шары одинакового размера разместить на плоскости так, чтобы образовалось их квадратное расположение, тогда шары второго слоя следует расположить в углублениях, образованных шарами первого слоя (рисунок 7), шары третьего слоя будут повторять первый и т. д. Как и в случае структуры ГПУ, чередование слоев отвечает последовательности АВАВ...АВ, однако каждый из слоев не является плотноупакованным; в отличие от ГЦК и ГПУ, где координационное число атомов равно 12, рассматриваемая структура имеет координационное число 8.

Рисунок 7 – Объемноцентрированная кубическая решетка

Легко видеть, что для металлов характерен полиморфизм (аллотропия) (рисунок 2), причем достаточно незначительного изменения в электронной структуре атомов, чтобы произошла перестройка кристаллической решетки. Теплота взаимного перехода между структурами ГЦК и ГПУ не превышает 1 кДж/моль, тогда как теплота плавления составляет от 10 до 40 кДж/моль.

Подавляющее большинство металлов имеет одну из трех структур (ГЦК, ОЦК, ГПУ), a Mn, Ga, In, Hg ‑ аналогичные, но искаженные структуры. Между типом структуры и положением металла в периодической системе Менделеева трудно обнаружить простые закономерности. Тем не менее очевидно, что повышение числа неспаренных валентных s - и р -электронов в состоянии, используемом для образования связи с 1 (щелочные металлы) до 3 (металлы третьей главной подгруппы), увеличивает КЧ с 8 (ОЦК решетка) до 12 (ГЦК или ГПУ решетка). При полиморфизме эффект от повышения числа валентных электронов эквивалентен понижению температуры или повышению давления.

Все неметаллические элементы, кроме кислорода, диамагнитны. Металлы, за исключением принадлежащих к группам 1Б‑IIIБ, являются парамагнитными. Среди металлов исключительно высоким магнетизмом обладают железо, кобальт и никель. По виду температурной зависимости можно выделить следующие группы металлов: магнитные свойства почти не изменяются вплоть до 1100 °С (Mo, W, Os); магнитная восприимчивость подчиняется закону Кюри-Вейса (К, Mg, Zn, In, Sc); магнитные свойства изменяются в слабой степени при температуре плавления (Na, Cd, A1); с аномальным изменением магнитных свойств (Ag, Аи, Tl, Sn, Pb, Sb, Bi) и, наконец, магнитные свойства изменяются (Zn, Tl) или не изменяются (Ti, Sn) в точках перехода. Упорядоченное в соответствии с периодическим законом Менделеева множество химических элементов подразделяется на подмножества, т. е. достаточно изолированные области химических элементов, соответствующие типичным металлам, ферромагнетикам, сверхпроводникам, диэлектрикам, полупроводникам и полуметаллам.

Содержание статьи

КРИСТАЛЛЫ – вещества, в которых мельчайшие частицы (атомы, ионы или молекулы) «упакованы» в определенном порядке. В результате при росте кристаллов на их поверхности самопроизвольно возникают плоские грани, а сами кристаллы принимают разнообразную геометрическую форму. Каждый, кто побывал в музее минералогии или на выставке минералов, не мог не восхититься изяществом и красотой форм, которые принимают «неживые» вещества.

А кто не любовался снежинками, разнообразие которых поистине бесконечно! Еще в 17 в. знаменитый астроном Иоганн Кеплер написал трактат О шестиугольных снежинках, а спустя три столетия были изданы альбомы, в которых представлены коллекции увеличенных фотографий тысяч снежинок, причем ни одна из них не повторяет другую.

Интересно происхождения слова «кристалл» (оно звучит почти одинаково во всех европейских языках). Много веков назад среди вечных снегов в Альпах, на территории современной Швейцарии, нашли очень красивые, совершенно бесцветные кристаллы, очень напоминающие чистый лед. Древние натуралисты так их и назвали – «кристаллос», по-гречески – лед; это слово происходит от греческого «криос» – холод, мороз. Полагали, что лед, находясь длительное время в горах, на сильном морозе, окаменевает и теряет способность таять. Один из самых авторитетных античных философов Аристотель писал, что «кристаллос рождается из воды, когда она полностью утрачивает теплоту». Римский поэт Клавдиан в 390 то же самое описал стихами:

Ярой альпийской зимой лед превращается в камень.

Солнце не в силах затем камень такой растопить .

Аналогичный вывод сделали в древности в Китае и Японии – лед и горный хрусталь обозначали там одним и тем же словом. И даже в 19 в. поэты нередко соединяли воедино эти образы:

Едва прозрачный лед, над озером тускнея,

Кристаллом покрывал недвижные струи.

А.С.Пушкин. К Овидию

Особое место среди кристаллов занимают драгоценные камни, которые с древнейших времен привлекают внимание человека. Люди научились получать искусственно очень многие драгоценные камни. Например, подшипники для часов и других точных приборов уже давно делают из искусственных рубинов. Получают искусственно и прекрасные кристаллы, которые в природе вообще не существуют. Например, фианиты – их название происходит от сокращения ФИАН – Физический институт Академии наук, где они впервые были получены. Фианиты – кристаллы кубического оксида циркония ZrO 2 , которые внешне очень похожи на бриллианты.

Строение кристаллов.

В зависимости от строения, кристаллы делятся на ионные, ковалентные, молекулярные и металлические. Ионные кристаллы построены из чередующихся катионов и анионов, которые удерживаются в определенном порядке силами электростатического притяжения и отталкивания. Электростатические силы ненаправленные: каждый ион может удержать вокруг себя столько ионов противоположного знака, сколько помещается. Но при этом силы притяжения и отталкивания должны быть уравновешены и должна сохраняться общая электронейтральность кристалла. Все это с учетом размеров ионов приводит к различным кристаллическим структурам. Так, при взаимодействии ионов Na + (их радиус 0,1 нм) и Cl – (радиус 0,18 нм) возникает октаэдрическая координация: каждый ион удерживает около себя шесть ионов противоположного знака, расположенных по вершинам октаэдра. При этом все катионы и анионы образуют простейшую кубическую кристаллическую решетку, в которой вершины куба попеременно заняты ионами Na + и Cl – . Аналогично устроены кристаллы KCl, BaO, CaO, ряда других веществ.

Ионы Cs + (радиус 0,165 нм) по размерам близки ионам Cl – , и возникает кубическая координация: каждый ион окружен восемью ионами противоположного знака, расположенными в вершинах куба. При этом образуется объемноцентрированная кристаллическая решетка: в центре каждого куба, образованного восемью катионами, расположен один анион, и наоборот. (Интересно, что при 445° С CsCl переходит в простую кубическую решетку типа NaCl.) Более сложно устроены кристаллические решетки CaF 2 (флюорита), многих других ионных соединений. В некоторых ионных кристаллах сложные многоатомные анионы могут соединяться в цепи, слои или образовывать трехмерный каркас, в полостях которого располагаются катионы. Так, например, устроены силикаты. Ионные кристаллы образуют большинство солей неорганических и органических кислот, оксиды, гидроксиды, соли. В ионных кристаллах связи между ионами прочные, поэтому такие кристаллы имеют высокие температуры плавления (801° С для NaCl, 2627° С для СаО).

В ковалентных кристаллах (их еще называют атомными) в узлах кристаллической решетки находятся атомы, одинаковые или разные, которые связаны ковалентными связями. Эти связи прочные и направлены под определенными углами. Типичным примером является алмаз; в его кристалле каждый атом углерода связан с четырьмя другими атомами, находящимися в вершинах тетраэдра. Ковалентные кристаллы образуют бор, кремний, германий, мышьяк, ZnS, SiO 2 , ReO 3 , TiO 2 , CuNCS. Поскольку между полярной ковалентной и ионной связью нет резкой границы, то же справедливо и для ионных и ковалентных кристаллов. Так, заряд на атоме алюминия в Al 2 O 3 равен не +3, а лишь +0,4, что свидетельствует о большом вкладе ковалентной структуры. В то же время в алюминате кобальта CoAl 2 O 4 заряд на атомах алюминия увеличивается до +2,8, что означает преобладание ионных сил. Ковалентные кристаллы, как правило, твердые и тугоплавкие.

Молекулярные кристаллы построены из изолированных молекул, между которыми действуют сравнительно слабые силы притяжения. В результате такие кристаллы имеют намного меньшие температуры плавления и кипения, твердость их низка. Так, кристаллы благородных газов (они построены из изолированных атомов) плавятся уже при очень низких температурах. Из неорганических соединений молекулярные кристаллы образуют многие неметаллы (благородные газы, водород, азот, белый фосфор, кислород, сера, галогены), соединения, молекулы которых образованы только ковалентными связями (H 2 O, HCl, NH 3 , CO 2 и др.). Этот тип кристаллов характерен также почти для всех органических соединений. Прочность молекулярных кристаллов зависит от размеров и сложности молекул. Так, кристаллы гелия (радиус атома 0,12 нм) плавятся при –271,4°С (под давлением 30 атм), а ксенона (радиус 0,22 нм) – при –111,8° С; кристаллы фтора плавятся при –219,6° С, а иода – при +113,6° С; метана СН 4 – при –182,5° С, а триаконтана С 30 Н 62 – при +65,8° С.

Металлические кристаллы образуют чистые металлы и их сплавы. Такие кристаллы можно увидеть на изломе металлов, а также на поверхности оцинкованной жести. Кристаллическая решетка металлов образована катионами, которые связаны подвижными электронами («электронным газом»). Такое строение обусловливает электропроводность, ковкость, высокую отражательную способность (блеск) кристаллов. Структура металлических кристаллов образуется в результате разной упаковки атомов-шаров. Щелочные металлы, хром, молибден, вольфрам и др. образуют объемноцентрированную кубическую решетку; медь, серебро, золото, алюминий, никель и др. – гранецентрированную кубическую решетку (в ней помимо 8 атомов в вершинах куба имеются еще 6, расположенные в центре граней); бериллий, магний, кальций, цинк и др. – так называемую гексагональную плотную решетку (в ней 12 атомов расположены в вершинах прямоугольной шестигранной призмы, 2 атома – в центре двух оснований призмы и еще 3 атома – в вершинах треугольника в центре призмы).

Все кристаллические соединения можно разделить на моно- и поликристаллические. Монокристалл представляет собой монолит с единой ненарушенной кристаллической решеткой. Природные монокристаллы больших размеров встречаются очень редко. Большинство кристаллических тел являются поликристаллическими, то есть состоят из множества мелких кристалликов, иногда видных только при сильном увеличении.

Рост кристаллов.

Многие видные ученые, внесшие большой вклад в развитие химии, минералогии, других наук, начинали свои первые опыты именно с выращивания кристаллов. Помимо чисто внешних эффектов, эти опыты заставляют задумываться на тем, как устроены кристаллы и как они образуются, почему разные вещества дают кристаллы разной формы, а некоторые вовсе не образуют кристаллов, что надо сделать, чтобы кристаллы получились большими и красивыми.

Вот простая модель, поясняющая суть кристаллизации. Представим, что в большом зале укладывают паркет. Легче всего работать с плитками квадратной формы – как ни поверни такую плитку, она все равно подойдет к своему месту, и работа пойдет быстро. Именно поэтому легко кристаллизуются соединения, состоящие из атомов (металлы, благородные газы) или небольших симметричных молекул. Такие соединения, как правило, не образуют некристаллических (аморфных) веществ.

Труднее выложить паркет из прямоугольных дощечек, особенно если у них с боков имеются пазы и выступы – тогда каждую дощечку можно уложить на свое место одним единственным способом. Особенно трудно выложить паркетный узор из дощечек сложной формы.

Если паркетчик очень торопится, то плитки будут поступать к месту укладки слишком быстро. Понятно, что правильного узора теперь не получится: если хотя бы в одном месте плитку перекосит, то дальше все пойдет криво, появятся пустоты (как в старой компьютерной игре «Тетрис», в которой «стакан» заполняется деталями слишком быстро). Ничего хорошего не получится и в том случае, если в большом зале начнут укладывать паркет сразу десяток мастеров – каждый со своего места. Даже если они будут работать не спеша, крайне сомнительно, чтобы соседние участки оказались хорошо состыкованными, и в целом, вид у помещения получится весьма неприглядным: в разных местах плитки расположены в разном направлении, а между отдельными участками ровного паркета зияют дыры.

Примерно те же процессы происходят и при росте кристаллов, только сложность здесь еще и в том, что частички должны укладываться не в плоскости, а в объеме. Но ведь никакого «паркетчика» здесь нет – кто же укладывает частички вещества на свое место? Оказывается, они укладываются сами, потому что непрерывно совершают тепловые движения и «ищут» самое подходящее для себя место, где им будет наиболее «удобно». В данном случае «удобство» подразумевает также и наиболее энергетически выгодное расположение. Попав на такое место на поверхности растущего кристалла, частица вещества может там остаться и через некоторое время оказаться уже внутри кристалла, под новыми наросшими слоями вещества. Но возможно и другое – частица вновь уйдет с поверхности в раствор и снова начнет «искать», где ей удобнее устроиться.

Каждое кристаллическое вещество имеет определенную свойственную ему внешнюю форму кристалла. Например, для хлорида натрия эта форма – куб, для алюмокалиевых квасцов – октаэдр. И даже если сначала такой кристалл имел неправильную форму, он все равно рано или поздно превратится в куб или октаэдр. Более того, если кристалл с правильной формой специально испортить, например, отбить у него вершины, повредить ребра и грани, то при дальнейшем росте такой кристалл начнет самостоятельно «залечивать» свои повреждения. Происходит это потому, что «правильные» грани кристалла растут быстрее, «неправильные» – медленнее. Чтобы убедиться в этом, был проведен такой опыт: из кристалла поваренной соли выточили шар, а потом поместили его в насыщенный раствор NaCl; через некоторое время шар сам постепенно превратился в куб! Рис. 6 Формы кристаллов некоторых минералов

Если процесс кристаллизации идет не слишком быстро, а частицы обладают удобной для укладки формой и высокой подвижностью, они легко находят свое место. Если же резко снизить подвижность частиц с низкой симметрией, то они «застывают» как попало, образуя прозрачную массу, похожую на стекло. Такое состояние вещества так и называют – стеклообразным. Примером может служить обычное оконное стекло. Если стекло долго держать сильно нагретым, когда частицы в нем достаточно подвижны, в нем начнут расти кристаллы силикатов. Такое стекло теряет прозрачность. Стеклообразными могут быть не только силикаты. Так, при медленном охлаждении этилового спирта он кристаллизуется при температуре –113,3° С, образуя белую снегообразную массу. Но если охлаждение вести очень быстро (опустить тонкую ампулу со спиртом в жидкий азот с температурой –196° С), спирт застынет так быстро, что его молекулы не успеют построить правильный кристалл. В результате получится прозрачное стекло. То же происходит и с силикатным стеклом (например, оконным). При очень быстром охлаждении (миллионы градусов в секунду) даже металлы можно получить в некристаллическом стеклообразном состоянии.

Трудно кристаллизуются вещества с «неудобной» формой молекул. К таким веществам относятся, например, белки и другие биополимеры. Но и обычный глицерин, который имеет температуру плавления +18° С, при охлаждении легко переохлаждается, постепенно застывая в стеклообразную массу. Дело в том, что уже при комнатной температуре глицерин очень вязкий, а при охлаждении становится совсем густым. При этом несимметричным молекулам глицерина очень трудно выстроиться в строгом порядке и образовать кристаллическую решетку.

Способы выращивания кристаллов.

Кристаллизацию можно вести разными способами. Один из них – охлаждение насыщенного горячего раствора. При каждой температуре в данном количестве растворителя (например, в воде) может раствориться не более определенного количества вещества. Например, в 100 г воды при 90° С может раствориться 200 г алюмокалиевых квасцов. Такой раствор называется насыщенным. Будем теперь охлаждать раствор. С понижением температуры растворимость большинства веществ уменьшается. Так, при 80° С в 100 г воды можно растворить уже не более 130 г квасцов. Куда же денутся остальные 70 г? Если охлаждение вести быстро, избыток вещество просто выпадет в осадок. Если этот осадок высушить и рассмотреть в сильную лупу, то можно увидеть множество мелких кристалликов.

При охлаждении раствора частички вещества (молекулы, ионы), которые уже не могут находиться в растворенном состоянии, слипаются друг с другом, образуя крошечные кристаллы-зародыши. Образованию зародышей способствуют примеси в растворе, например пыль, мельчайшие неровности на стенках сосуда (химики иногда специально трут стеклянной палочкой по внутренним стенкам стакана, чтобы помочь кристаллизации вещества). Если раствор охлаждать медленно, зародышей образуется немного, и, обрастая постепенно со всех сторон, они превращаются в красивые кристаллики правильной формы. При быстром же охлаждении образуется много зародышей, причем частички из раствора будут «сыпаться» на поверхность растущих кристалликов, как горох из порванного мешка; конечно, правильных кристаллов при этом не получится, потому что находящиеся в растворе частицы могут просто не успеть «устроиться» на поверхности кристалла на положенное им место. Кроме того, множество быстро растущих кристалликов так же мешают друг другу, как несколько паркетчиков, работающих в одной комнате. Посторонние твердые примеси в растворе также могут играть роль центров кристаллизации, поэтому чем чище раствор, тем больше шансов, что центров кристаллизации будет немного.

Охладив насыщенный при 90° С раствор квасцов до комнатной температуры, мы получим в осадке уже 190 г, потому что при 20° С в 100 г воды растворяется только 10 г квасцов. Получится ли при этом один большой кристалл правильной формы массой 190 г? К сожалению, нет: даже в очень чистом растворе вряд ли начнет расти один-единственный кристалл: масса кристалликов может образоваться на поверхности остывающего раствора, где температура немного ниже, чем в объеме, а также на стенках и дне сосуда.

Метод выращивания кристаллов путем постепенного охлаждения насыщенного раствора неприменим к веществам, растворимость которых мало зависит от температуры. К таким веществам относятся, например, хлориды натрия и алюминия, ацетат кальция.

Другой метод получения кристаллов – постепенное удаление воды из насыщенного раствора. «Лишнее» вещество при этом кристаллизуется. И в этом случае чем медленнее испаряется вода, тем лучше получаются кристаллы.

Третий способ – выращивание кристаллов из расплавленных веществ при медленном охлаждении жидкости. При использовании всех способов наилучшие результаты получаются, если используется затравка – небольшой кристалл правильной формы, который помещают в раствор или расплав. Таким способом получают, например, кристаллы рубина. Выращивание кристаллов драгоценных камней проводят очень медленно, иногда годами. Если же ускорить кристаллизацию, то вместо одного кристалла получится масса мелких.

Кристаллы могут также расти при конденсации паров – так получаются снежинки и узоры на холодном стекле. При вытеснении металлов из растворов их солей с помощью более активных металлов также образуются кристаллы. Например, если в раствор медного купороса опустить железный гвоздь, он покроется красным слоем меди. Но образовавшиеся кристаллы меди настолько мелкие, что их можно разглядеть только под микроскопом. На поверхности гвоздя медь выделяется очень быстро, поэтому и кристаллы ее слишком мелкие. Но если процесс замедлить, кристаллы получатся большими. Для этого медный купорос надо засыпать толстым слоем поваренной соли, положить на него кружок фильтровальной бумаги, а сверху – железную пластинку диаметром чуть поменьше. Осталось налить в сосуд насыщенный раствор поваренной соли. Медный купорос начнет медленно растворяться в рассоле (растворимость в нем меньше, чем в чистой воде). Ионы меди (в виде комплексных анионов CuCl 4 2– зеленого цвета) будут очень медленно, в течение многих дней, диффундировать вверх; за процессом можно наблюдать по движению окрашенной границы.

Достигнув железной пластинки, ионы меди восстанавливаются до нейтральных атомов. Но так как процесс этот происходит очень медленно, атомы меди выстраиваются в красивые блестящие кристаллы металлической меди. Иногда эти кристаллы образуют разветвления – дендриты. Меняя условия опыта (температура, размер кристаллов купороса, толщина слоя соли и т.п.), можно менять условия кристаллизации меди.

Переохлажденные растворы.

Иногда насыщенный раствор при охлаждении не кристаллизуется. Такой раствор, который содержит в определенном количестве растворителя больше растворенного вещества, чем это «положено» при данной температуре, называется пересыщенным раствором. Пересыщенный раствор невозможно получить даже очень длительным перемешиванием кристаллов с растворителем, он может образоваться только путем охлаждения горячего насыщенного раствора. Поэтому такие растворы называют также переохлажденными. В них что-то мешает началу кристаллизации, например, раствор слишком вязкий или для роста кристаллов требуются большие зародыши, которых в растворе нет.

Легко переохлаждаются растворы тиосульфата натрия Na 2 S 2 O 3 . 5H 2 O. Если осторожно нагреть кристаллы этого вещества примерно до 56° С, они «расплавятся». В действительности это не плавление, а растворение тиосульфата натрия в «собственной» кристаллизационной воде. С повышением температуры растворимость тиосульфата натрия, как и большинства других веществ, увеличивается, и при 56° С его кристаллизационной воды оказывается достаточно, чтобы растворить всю имеющуюся соль. Если теперь осторожно, избегая резких толчков, охладить сосуд, кристаллы не образуются и вещество останется жидким. Но если в переохлажденный раствор внести готовый зародыш – маленький кристаллик этого же вещества, то начнется быстрая кристаллизация. Интересно, что ее вызывает кристалл только этого вещества, а к постороннему раствор может быть совершенно безразличен. Поэтому если прикоснуться небольшим кристалликом тиосульфата к поверхности раствора, произойдет настоящее чудо: от кристаллика побежит фронт кристаллизации, который быстро дойдет до дна сосуда. Так что уже через несколько секунд жидкость полностью «затвердеет». Сосуд можно даже перевернуть – из него не выльется ни одной капли! Твердый тиосульфат можно снова расплавить в горячей воде и повторить все сначала.

Если пробирку с переохлажденным раствором тиосульфата поставить в ледяную воду, кристаллы будут расти медленнее, а сами будут крупнее. Кристаллизация пересыщенного раствора сопровождается его нагреванием – это выделяется тепловая энергия, полученная кристаллогидратом при его плавлении.

Тиосульфат натрия – не единственное вещество, образующее переохлажденный раствор, в котором можно вызвать быструю кристаллизацию. Подобным свойством обладает, например, и ацетат натрия CH 3 COONa (его легко получить действием уксусной кислоты на соду). С ацетатом натрия опытные лекторы демонстрируют такое «чудо»: на небольшую горку ацетата в блюдце они медленно льют пересыщенный раствор этой соли, который, соприкасаясь с кристаллами, немедленно кристаллизуется, образуя столбик твердой соли!

Кристаллы широко применяются в науке и технике: полупроводники, призмы и линзы для оптических приборов, твердотельные лазеры, пьезоэлектрики, сегнетоэлектрики, оптические и электрооптические кристаллы, ферромагнетики и ферриты, монокристаллы металлов высокой чистоты...

Рентгеноструктурные исследования кристаллов позволили установить строение многих молекул, в том числе и биологически активных – белков, нуклеиновых кислот.

Ограненные кристаллы драгоценных камней, в том числе выращенных искусственно, используются как украшения.

Илья Леенсон

Молекул в кристалле. Кристаллическая структура определяется кристаллической решёткой, симметрией кристалла, формой и размерами его элементарной ячейки, типом и координатами атомов в ячейке. В идеальном кристалле содержание и положения атомов во всех ячейках одинаковые. За исключением химического состава все остальные характеристики кристаллической структуры определяются дифракционными методами - рентгеновского структурного анализа, электронографии, нейтронографии структурной. В кристаллах твёрдых растворов и при других отклонениях химического состава от стехиометрии структурный анализ высокой точности позволяет определить и уточнить соответствующие параметры.

При падении на монокристалл излучения с длиной волны порядка межатомных расстояний возникает дифракционная картина, которая состоит из дискретного набора пиков. Положения пиков определяются кристаллической решёткой, а их интенсивности зависят от типа атомов и их расположения в элементарной ячейке кристалла. Наличие в кристалле элементов симметрии проявляется в равенстве интенсивностей соответствующих пиков. Исключение составляет то, что дифракционная картина всегда центросимметрична (независимо от наличия или отсутствия центра симметрии в кристалле). Вследствие этого с помощью рентгеноструктурного анализа можно различить только 122 группы из 230 пространственных (фёдоровских) групп симметрии кристаллов. Наличие (или отсутствие) центра симметрии в кристалле можно установить по статистике распределения интенсивностей дифракционных пиков. Экспериментальное определение отсутствия центра симметрии возможно, если в кристалле есть атомы с аномальным рассеянием используемого излучения. Наиболее сложной является методика определения координат атомов в элементарной ячейке кристалла.

Рассмотрим кристаллическую структуру некоторых элементов периодической системы. Так, в двух модификациях полония различной симметрии содержится по 1 атому в элементарной ячейке. В элементарных ячейках кристаллов калия, цинка, молибдена и ряда других элементов содержится по 2 атома, в ячейке теллура - 3, а в двух модификациях марганца по 20 и 58 атомов в ячейке соответственно. В кристаллах неорганических и органических соединений могут находиться от единиц до сотен атомов в ячейке. В кристаллах белков от тысяч до сотни тысяч атомов, а в закристаллизованных вирусах ещё на 2-3 порядка больше.

Рассмотрим кристаллическую структуру кристаллов различной природы. Кристаллы ниобата лития LiNbO 3 широко применяются в лазерной технике и оптике. На рисунке 1 представлены два изображения его кристаллической структуры. В первом случае атомы - шарики. Крупные анионы кислорода не позволяют увидеть общую организацию строения кристалла. Л. Полинг предложил изображать неорганические структуры в форме полиэдров, вершины которых являются центрами анионов, а внутри полиэдров находится соответствующий катион. В представленном на рисунке 1, б ниобате лития это октаэдры и .

Кристаллы семейства ниобата стронция-бария Sr 1-x Ba x Nb 2 О 6 характеризуются нелинейными оптическими, пиро и пьезоэлектрическими свойствами (смотри Пироэлектрики, Пьезоэлектричество), которыми можно целенаправленно управлять, меняя соотношение стронция и бария. На рисунке 2 представлена кристаллическая структура этих кристаллов, из которой видно, что часть атомов стронция занимает собственную позицию, а в другой позиции статистически расположены атомы бария и стронция, координаты которых несколько различаются.

Кристаллические структуры органических соединений обычно представляют собой плотную упаковку молекул, связанных слабыми ван-дер-ваальсовыми и, возможно, водородными связями. Кристаллы органических соединений находят применение в технике, однако часто их получают только для того, чтобы рентгеновскими методами установить атомное строение молекул, так как органические соединения в растворах (а биологически активные соединения в организме) действуют в качестве отдельных молекул. Структуры молекул антибиотиков - аналогов энниатина В и споридесмолида представлены на рисунке 3. Первое соединение является препаратом для избирательного транспорта катионов через биологические мембраны, а второе - лишено этого свойства из-за внутримолекулярных водородных связей, хотя обе молекулы циклические и состоят из 6 аминокислотных остатков. Различие в строении молекул установлено по кристаллической структуре соответствующих кристаллов.

Современный структурный анализ высокой точности позволяет определять не только координаты атомов, но и параметры тепловых колебаний атомов с учётом анизотропии и ангармонизма этих колебаний. Для не очень сложных соединений рентгеноструктурным анализом можно установить распределение электронной плотности в их кристаллах. Структурные методы чувствительны к нарушению стехиометрии химического состава кристалла и к его всевозможным дефектам. Обширный материал о структурах кристаллических веществ представлен в электронных базах данных (смотри Кристаллохимия).

Лит.: Белов Н. В. Структура ионных кристаллов и металлических фаз. М., 1947; он же. Структурная кристаллография. М., 1951; Китайгородский А. И. Органическая кристаллохимия. М., 1947; Федоров Е. С. Симметрия и структура кристаллов. М.; Л., 1949; Бландел Т., Джонсон Л. Кристаллография белка. М., 1979.