Радиационная доза. Всё, что вы должны знать о радиации

Несмотря на появления огромного количества новых современных методов диагностики, рентгенологическое исследование до сих пор пользуется широкой популярностью. С течением времени рентген стал более совершенным, безопасным для человека и информативным для постановки диагноза. Но все эти попытки сделать исследование полностью безопасным не увенчались успехом. Дело в том, что доза облучения при рентгене любого органа человека способна суммироваться и превышать допустимые нормы.

Что собой являет рентгеновское излучение

Чтобы понять, опасно ли человеку делать рентген, нужно знать, что это такое. Рентгеновское излучение – это направленный поток электромагнитных волн с определенной длиной, который находится в промежутке между излучением ультрафиолета и гамма-частиц. Каждая волна имеет свое специфическое влияние на все органы человека.
По своей природе рентгеновское излучение относится к ионизирующим лучам. Такие виды излучения способны с лёгкостью проникать в любую часть тела человека. Но это опасно для человека. В зависимости от получаемой дозы, вредность для исследуемых разная: чем выше доза, тем хуже для здоровья.

Особенности радиационного исследования в медицине

Рентгеновское излучение занимает почетное второе место среди всех способов облучения человека, после природного. Но по сравнению с последним, излучение, которое применяется в рентгенодиагностике, намного опаснее из-за таких причин:

  • Рентгеновское излучение превышает мощность натуральных источников радиации.
  • В диагностических целях облучается ослабленный заболеванием человек, что усиливает вред здоровью от рентгеновских лучей.
  • Медицинское излучение имеет неравномерное распределение по организму.
  • Органы могут подвергаться рентгеновским лучам несколько раз.

Однако, в отличие от радиации природного происхождения, которое трудно предотвратить, рентгенодиагностика уже давно включает в себя разные способы защити от вредного влияния излучения на человека. Об этом немного позже.

Чем опасен рентген

Каждый человек, который сталкивался с рентгеном, слышал о его вреде. Когда лучи проходят сквозь ткани человека, атомы и молекулы клеток ионизируются. Из-за этого их структура необратимо меняется.
Каждая клетка по-своему реагирует на облучение, поэтому некоторые ткани и органы подвергаются патологии сразу же после контакта с радиацией, а для некоторых нужна доза несколько больше или более длительное воздействие. Больше всех подвержены влиянию рентгеновских лучей органы кроветворения – красный костный мозг. Для нервной системы это наименее опасно. Всё зависит от способности клеток к делению.
После полученного облучения заболеть может или сам человек (лучевая болезнь, соматические нарушения, бесплодие) или его потомки (генетические мутации и патологии).
Человек, который подвергся облучению, в первую очередь чувствует гриппоподобные симптомы: тошноту, слабость, ненавязчивую боль в мышцах, головокружение. Первые изменения проявляются в общем анализе крови.

Каждый орган и ткань по-разному реагируют на излучения.

Начальные симптомы у человека:

  • обратимая смена состава элементов крови после незначительного облучения;
  • лейкемия (уменьшение количества лейкоцитов) с первого дня лучевой нагрузки, вследствие чего, снижается иммунитет и человек стает уязвим к разным заболеваниям;
  • лимфоцитоз (увеличение содержания лимфоцитов) на фоне лейкемии – один с главных признаков, по которым можно заподозрить рентгеновское облучение;
  • тромбоцитопения (уменьшение тромбоцитов в объеме крови), которая может привести к синякам, кровотечениям и усугубить процесс;
  • эритроцитопения (снижение количества эритроцитов) а также их распад, что ведет к гипоксии всех тканей организма.

Отдаленные последствия:

  • развитие злокачественных процессов;
  • бесплодие;
  • преждевременное старение;
  • развитие катаракты.

Все эти симптомы и патологические состояния возникают только, если рентгеновское излучение было очень интенсивное, а контакт с человеком очень длительный. Современные медицинские рентген аппараты могут зафиксировать нужные изменения исследованного органа при минимальной дозе облучения. С этого следует, что процедура относительно безвредной, даже если исследование приходится делать много раз.

Патологии крови – самое частое осложнение, появляющееся после облучения.

Какое обследование самое опасное?

Те, кто не разбираются в рентгенах, думают, что все исследования действуют на организм одинаково. Но не все оборудования, принцип действия которых основан на радиационном излучении, влияют с одинаковой силой. Чтобы сравнить излучение различных видов рентгенодиагностики, стоить воспользоваться средними показателями эффективных доз. Здесь наведена таблица влияния флюорографии, рентгенографии, рентгеноскопии и компьютерной томографии на разные органы и части тела в дозах за одну процедуру. С ее помощью можно узнать, какое обследование является самым опасным.

Очевидно, что КТ и рентгеноскопия дают самую высокую радиационную нагрузку. Рентгеноскопия длится несколько минут в отличии, от короткой длительности остальных методов, что и объясняет высокий показатель облучения. Что касается КТ, доза облучения зависит от количества снимков. Еще большая лучевая нагрузка наблюдается при сцинтиграфии, при которой в организм вводятся радиоактивные вещества.

Допустимая доза облучения

Сколько раз за год делать рентген обследование, чтобы не нанести вред своему здоровью? С одной стороны, все эти методы вполне безвредны. Но почему-то же их запрещают проводить у беременных и детей. Попробуем разобраться.
Считается, что облучение зависит от посещаемости рентген-кабинетов. Но на самом деле нужно ориентироваться на дозу излучения. Для каждого исследования существует своя допустимая доза облучения.

  • Флюорография, маммография - 0,8 мЗв
  • Дентальный (зубной) рентген - 0,15-0,35 мЗв (на цифровой аппарат даёт на порядок меньше облучения).
  • Рентгенография (РГ/РТГ) органов грудной клетки - 0,15-0,40 мЗв.

За документами Минздрава, в год человек не должен получить больше 15 мЗв. Для рентгенологов эта доза увеличивается до 20 мЗв.

Сами по себе лучи не накапливаются и не образовывают радиоактивные вещества.

Опасная доза облучения

Допустимые дозы не должны наносить вред здоровью. Дозы выше нормы могут спровоцировать соматические патологии. Нагрузка в больше чем 3 Зв вызывает лучевую болезнь.
Важно знать, что человек подвергается облучению в большей степени, если делает рентген в разгар болезни.
Стоить отметить, что ионизирующее излучение используется не только в диагностических целях в медицине. Оно довольно популярное в лечении, особенно при опухолевых заболеваниях крови. Лучевая терапия подвергает человеческий организм облучению с такой нагрузкой, с которой не сравнится ни один рентгенологический метод исследования.

Как вывести радиацию после рентгена

При однократном рентгеновском облучении пациент получает дозу, которая может вызвать малигнизацию в 0,001%. Врядли такая маленькая доза вызовет симптомы лучевой болезни или других патологических состояний. Кроме этого, лучи рентгеновского аппарата прекращают свое действие сразу после прекращения процедуры. Они не могут накапливаться в организме или образовывать самостоятельные источники излучения. Поэтому, профилактические мероприятия нецелесообразны и нет никакого смысла выводить радиацию после рентгена.
Но, к сожалению, человек может подвергаться воздействия радиоактивных веществ с других источников. Кроме того, рентгеновские аппараты могут выходить из строя, чем вызывают опасность.

Допускается безопасная доза, полученная человеком за 70 лет жизни до 70 мЗв.

Как снизить вредное влияние рентгена

Современные рентгеновские аппараты намного безопаснее, нежели оборудование, которое использовались пару лет назад. Но защитить себя не станет лишним. Существует несколько таких рекомендаций:

  • Выбирать метода с наименьшим облучением.
  • Не проводить процедуру без обоснованных показаний.
  • По возможности, заменить рентген на исследование без лучевой нагрузки.
  • Не проводить обследование во время разгара болезни.
  • Применить индивидуальные факторы защиты (фартуки, передники и прочее).

Есть ли польза от радиации

Как известно, контактировать с радиацией опасно для здоровья. Но поскольку на людей воздействует ионизирующее излучение во внешней среде (солнце, глубь земли), а они при этом остаются относительно здоровыми, можно предположить, что и в радиации есть свои плюсы.

  • Без лучевого излучения клетки замедляют деление, а организм стареет.
  • Малые дозы могут оказывать даже лечебное действие и общеукрепляющий эффект.

Рентген для детей и беременных женщин

Всегда актуален вопрос, опасно ли детям и беременным делать рентген? Поскольку облучению подвергаются в первую очередь клетки, которые постоянно делятся, а детский организм находится в процессе активного роста, для малышей запрещено назначать данное исследование.
Если речь идет о лучевой терапии или об обоснованном исследовании, можно сделать исключение. При этом выбирать метод с самой минимальной лучевой нагрузкой. Профилактические рентген методы детям до 14 лет категорически запрещены, ведь они могут нанести непоправимый вред.
Что касается женщин в положении, им назначают это исследование только в крайних случаях. Ни женщин, ни детей нельзя пускать на обследование без защитной одежды. Диагностические исследования, связанные с лучевым излучением, обязательно фиксируются с учетом дозовых нагрузок.

Кормящих мамочек также интересует, можно ли делать рентген в период лактации? Не повлияет ли это на качество грудного молока? В данном случаи, беспокоится не стоит, рентгенодиагностика влияет на них точно также, как и на обычных взрослых людей.

Заключение

Устранить или ограничить влияние природных источников излучения непросто. Но в медицине это сделать гораздо проще, ведь дозы радиационного излучения в рентгенодиагностике минимальны. Но пренебрегать мерами защиты все же не следует. Ионизирующее облучение при необоснованно частом и длительном контакте могут нанести вред здоровью человека. Строгое выполнение всех рекомендаций, что относятся к рентгенодиагностике, снижает лучевую нагрузку на пациента.

Термин "радиоактивность" был предложен в 1898 году Марией Склодовской-Кюри, которая вместе с мужем Пьером Кюри открыла два новых радиоактивных химических элемента - полоний и радий. В честь супругов-ученых первая единица измерения радиоактивности была названа "кюри". Чему она равна, запомнить несложно. Радиоактивность в 1 кюри создает 1 г радия.(Эту единицу определяют еще так: 1 кюри - активность такого количества радиоактивного вещества, в котором происходит З,7*10 10 распадов в секунду.)

Слово "радиоактивность" часто мелькает на страницах газет и журналов в связи с аварией на Чернобыльской АЭС. В этих статьях приводятся цифры, характеризующие степень заражения местности, уровни радиации, дозы облучения. Например, пишут, что в зоне аварии Чернобыльской атомной станции есть районы, где радиоактивность составляет 1200 микрорентген в час. Считается, что безопасно для человека набрать за всю жизнь (за 70 лет) дозу облучения, не превышающую З5 бэров. И сразу возникают вопросы: как сравнить, сопоставить эти цифры: что скрывается за ними?

Радиоактивность можно измерять в различных единицах - в беккерелях, кюри, рентгенах, резерфордах, греях, зивертах и т. д., а мощность излучения - в этих же единицах, отнесенных к единице времени (секунде, часу, суткам, неделе, месяцу, году). Расскажем об основных единицах измерения радиоактивности, чаще других встречающихся в периодической печати.

1 рентген - это такая доза рентгеновских (или гамма) лучей, при которой в 1 см 3 воздуха образуется 2,08*10 9 пар ионов (или в 1 г воздуха -1,61*10 12 пар ионов).

1 бэр (биологический эквивалент рентгена) - доза любого излучения, которая производит такое же биологическое действие, как рентгеновское или гамма-излучение в 1 рентген.

Степень облучения измеряют еще в радах. Слово "рад" образовано от английского radiation absorbed doze - поглощенная доза излучения. 1 рад - это такое излучение, при котором каждый килограмм массы вещества (скажем, человеческого тела) поглощает 0,01 Дж энергии (или 1 г массы поглощает 100 эргов). Для обычных практических расчетов можно считать, что рентгены, рады и бэры равны между собой: 1 рентген=1 рад=1 бэр.

На рисунке приведены мощности различных радиоактивных источников и показано их воздействие на живые организмы. На верхней центральной шкале указано излучение, которое можно наблюдать в эпицентре взрыва атомной и водородной бомбы через определенные промежутки времени - час, день и т. д. На левой нижней шкале приведены мощности радиоактивных источников, с которыми мы сталкиваемся в обыденной жизни. Естественный радиоактивный фон образуется за счет космических лучей, излучения почвы, содержащей радиоактивные вещества, и от выпавших радиоактивных осадков.

На правой шкале приведены средние смертельные дозы для различных животных. Если человек за короткое время, скажем, час, получает дозу облучения 400 рентген, то с вероятностью 50% можно утверждать, что она смертельна. Если доза облучения повысится до 600 рентген, то вероятность летального исхода увеличится до 98%.

Когда взорвался реактор на Чернобыльской атомной электростанции, то мощность излучения из провала достигала 30000 рентген/час, а осколки реактора, попавшие на крышу четвертого блока, "светили" с мощностью 20 000 рентген/час. Нетрудно подсчитать, что достаточно было проконтактировать с ними всего полторы минуты, чтобы получить смертельную дозу облучения.

В заключение несколько слов о периоде полураспада. Так называют время, в течение которого число атомов данного радиоактивного вещества уменьшается вследствие распада вдвое. (Также в два раза уменьшается и интенсивность излучения.) Период полураспада меняется в широких пределах: от долей секунды до миллиардов лет. Среди долгоживущих изотопов, выброшенных в атмосферу в результате взрыва АЭС в Чернобыле, есть стронций-90 и цезий-1З7, периоды полураспада которых около 30 лет, поэтому зона Чернобыльской АЭС еще многие десятилетия будет непригодна для нормальной жизни.

Рисунок и сопровождающий его текст повествуют о малоприятных вещах, но радиация существует, и о ней надо знать.

Сегодня очень остро встал вопрос радиационного фона. Огромное количество приборов, которые окружают человека, способны нанести ему вред. Именно поэтому сотрудники санитарных инспекций, а также работники службы радиационной безопасности часто проверяют дома, улицы, предприятия, потому что норма радиации превышает допустимые значениия.

Нормы для человека

Норма радиации – это те значения, которые применяются учеными для обозначения безопасной среды в условиях воздействия на него различных приборов. Нормы радиации устанавливаются вышестоящими органами власти, которые и стараются регулировать четкость соблюдения их на том или ином предприятий, а также в обыденной жизни.

Нередко можно услышать, как обсуждается уровень радиации. Норма иногда превышает допустимые значения. В основном завышенные показатели наблюдаются на предприятиях химической промышленности, где работники носят специальные костюмы, чтобы избежать облучения.

Допустимые нормы

Нельзя точно сказать, какова норма радиации для человека. Учеными лишь были выявлены некоторые соответствия излучения с повседневными моментами жизни. Прежде всего, нужно отметить, что все показатели измеряются в микрозивертах в час (в этом определяется уровень воздействия гамма-излучения и радиационного фона).

Считается, что норма радиации, которая является допустимой для простого обывателя, не должна быть больше 5 мЗв в год. Причем показатели рассчитываются в совокупности за пять лет. Если же уровень повышен, то радиологи будут выяснять причину, и прежде всего искать ее в воздухе, проверять работающие химические предприятия в городе.

Примеры некоторых показателей

Итак, норма радиации (допустимая) для человека:


Как видно, человек на протяжении всей жизни поддается облучению. В зависимости от того, какой образ жизни он ведет и где работает, оно будет больше или меньше.

Эффекты при различных дозах облучения

Отдельно нужно сказать о том, какое воздействие окажет та или иная доза облучения:

  • 11 мкЗв в час – именно такая доза считается опасной и увеличивает во много раз вероятность появления раковых опухолей в организме человека.
  • 10000 мЗв в час – при таком облучении человек сразу же заболевает и умирает в течение двух или трех недель.
  • 1000 мЗв в год – при такой дозе облучения человек ощущает временное недомогание, которое проявляется симптомами лучевой болезни. Но она не приводит к летальному исходу и ухудшению состояния настолько, что человек не может вести нормальный образ жизни. Главная опасность состоит в том, что риск онкологических заболеваний становится настолько большим, что потребуются ежегодные осмотры для контроля за мутациями клеток.
  • 0,73 Зв в час – при таком кратковременном облучении наступает изменение состава крови, которое со временем пройдет. Но, как правило, это скажется на самочувствии человека в будущем.

Норма радиации для человека и последствия ее превышения

В том случае, если радиационный фон повышен, пусть даже ненамного, это может привести к таким последствиям для человека, как:

  • онкологические заболевания, причем в разы увеличивается скорость метастазирования;
  • проблемы с развитием плода во время беременности;
  • бесплодие как у женщин, так и у мужчин;
  • потеря зрения;
  • снижение защитной функции организма, а затем – постепенное ее уничтожение.

Что делать в случае повышения радиационного фона

Главной причиной того, что допустимая норма радиации завышена, являются окружающие человека предметы. На сегодняшний день все бытовые приборы облучают жителей земного шара. Если радиационный фон значительно повышен, необходимо обратить внимание и проверить:

  • батареи в доме, особенно те, которые были произведены еще в СССР;
  • мебель;
  • плитку, которую обычно выкладывают в туалете и ванной;
  • некоторые продукты питания, особенно привезенную рыбу (даже сейчас через границу перевозится рыба, побывавшая в отравленных водах).

Норма радиации – настолько важный показатель, что нельзя его игнорировать. Правда, сегодняшний темп и стиль жизни многих людей, а также всеобщая распространенность техники не позволяют его понизить. А происходит это потому, что ни один человек не может обойтись без сотового телефона, компьютера, интернета, так как на этом построена вся наша жизнь! Вот и приходится слышать в новостях о том, что стало умирать больше людей от онкологических заболеваний!

Врага нужно знать в лицо, поэтому хотя бы минимальные сведения о радиоактивном излучении необходимы всем. К сожалению, многое из того, что пишут и говорят обывательские СМИ о радиации и ее влиянии на живые организмы, далеко не всегда соответствует действительности, а еще большее - окутано плотной завесой мифов. Отсутствие достоверных знаний порождает страх, но проблема даже не в этом. А в том, что радиация в той или иной степени окружает нас повсюду, однако на ее наличие, а главное, на повышенный или даже критический уровень наши органы чувств не реагируют. Многие, не зная о наличии радиации, долго пребывают под ее воздействием, употребляют в пищу продукты питания и напитки, содержащие радиоактивные вещества. Многие, даже зная о повышенном радиационном фоне, предпочитают либо не замечать этого явления, либо прибегать к разного рода лжеметодам профилактики и борьбы, которые, скорее, вредят организму, нежели оказывают ему помощь и помогают нивелировать или хотя бы минимизировать вредные последствия.

Виды излучений

Радиация - это излучение, существующее в нескольких видах и представленное альфа-, бета- и гамма-лучами:

  • альфа-излучение - поток тяжелых нейтронных и протонных частиц, опасных для живых организмов только при внутреннем проникновении (при вдыхании зараженного воздуха, с пищей и т.д.);
  • бета-излучение - поток заряженных отрицательно частиц, которые могут проникать через незащищенную кожу на глубину 1-2 см;
  • гамма-излучение - самое опасное излучение с высоким уровнем способности проникать через кожные покровы и другие поверхности, значительно снизить интенсивность которого могут лишь солидные по толщине бетонные или свинцовые плиты.

Радиация опасна не сама по себе, а своим ионизирующим излучением, которое взаимодействует на атомном и молекулярном уровне с нашим организмом, разрывая в нем молекулярные связи и вызывая необратимые изменения.

Дозы радиации

Существует несколько разновидностей доз, являющихся основными физико-химическими характеристиками радиации:

  1. Экспозиционная доза, измеряемая в Рентгенах (Р) и свидетельствующая о степени ионизации сухого воздуха.
  2. Поглощенная доза - величина поглощенной веществом радиоактивной энергии на единицу его массы, измеряемая в Греях (Гр) или Радах, при соответствии 100 Рад одному Гр.
  3. Эквивалентная доза - величина биовоздействия радиации на живые организмы, рассчитываемая посредством умножения параметра поглощенной дозы на способность конкретного вида излучения повреждать ткани. Эту величину называют еще коэффициентом качества (КК). Эквивалентная доза измеряется в Зивертах или Бэрах. КК у разных видов лучей отличается: альфа-лучи - 20, быстрые нейтроны и протоны - 3-10, бета-, гамма- и рентгеновские лучи - 1.

Важным показателем радиации является и мощность дозы - величина дозы облучения за определенный промежуток времени, измеряемая в Зивертах в час (Зв/ч).

Существует также показатель «эффективная эквивалентная доза», используемый для расчета индивидуальной дозы, - эквивалентная доза, умноженная на коэффициент радиационного риска, применяемый в зависимости от конкретного органа человека.

Ткани и органы по-разному воспринимают радиацию. Самые восприимчивые - красный костный мозг, половые железы и легкие. В наименьшей степени воспринимают воздействие, в частности, мышечные ткани и щитовидная железа. Эффективная эквивалентная доза измеряется в Зивертах и Бэрах, при этом 100 Бэров равны 1 Зиверту. При необходимости эффективную эквивалентную дозу можно рассчитать и для определенной группы людей.

Коэффициент радиационного риска

Органы человека Коэффициент
Гонады (половые железы) 0,2
Красный костный мозг 0,12
Толстый кишечник 0,12
Желудок 0,12
Легкие 0,12
Мочевой пузырь 0,05
Печень 0,05
Пищевод 0,05
Щитовидная железа 0,05
Кожа 0,01
Клетки костных поверхностей 0,01
Головной мозг 0,025
Остальные ткани 0,05
Организм в целом 1

Как уже упоминалось, любой организм постоянно находится под радиационным воздействием, при этом далеко не любой его уровень опасен. Допустимым считается фон 0,08-0,3 мкЗв/ч.

Среди основных источников радиационного воздействия (с указанием эффективных эквивалентных доз за год):

Последствия воздействия радиации на организм

Учитывая, что каждый орган и каждая ткань по-разному воспринимают радиоактивное облучение, радиация воздействует на организм комплексно, вызывая различные изменения обратимого и необратимого характера: соматического (непосредственно у организма) и генетического (проявляющегося у потомков).

Радиации свойственна одна немаловажная особенность - однократное облучение определенной дозой радиации оказывает более опасное воздействие, нежели многократное облучение при аналогичном уровне дозировки. Небольшие дозы, даже серийного характера, довольно часто не приводят к необратимым последствиям, и организм может восстановиться.

При однократном воздействии гамма-лучей в определенной дозе последствия будут следующими:

100 зВ — смерть наступает через несколько часов или дней вследствие повреждения центральной нервной системы
10—50 зВ — смерть наступает через 1-2 недели вследствие внутренних кровоизлияний
4—5 зВ — 50% облученных умирает в течение 1-2 месяцев вследствие поражения клеток костного мозга
1 зВ — нижний уровень развития лучевой болезни
0,75 — кратковременные незначительные изменения состава крови
0,30 — облучение при рентгеноскопии желудка (разовое)
0,25 — допустимое аварийное облучение персонала (разовое)
0,1 — допустимое аварийное облучение населения (разовое)
0,05 — допустимое облучение персонала в нормальных условиях за год
0,005 — допустимое облучение населения в нормальных условиях за год
0,0035 — годовая эквивалентная доза облучения за счет всех источников излучения в среднем для жителя России

Допустимая доза и измерение радиации

Практически каждому взрослому человеку известно, что радиация - явление опасное, способное приводить к серьезным и даже трагическим последствиям для организма, зачастую проявляемым лишь спустя некоторое время. При определенном уровне радиоактивного облучения наступает смерть - не от самого облучения, а от его последствий. Очень многие люди ассоциируют радиацию с неизбежной и мучительной смертью, поэтому не случайно, услышав о том, что где-то обнаружена радиация, люди начинают паниковать.

Радиация была, есть и будет всегда нашим окружением - как генерируемая самой планетой, так и поступающая из космоса. Это факт, который доказан научно и неоспорим. Однако до определенного уровня радиация не способна причинить никакого вреда человеку. Этот уровень - допустимая радиация , рассчитываемая для:

  • отдельных временных интервалов;
  • отдельных специальностей;
  • отдельных видов работ;
  • отдельных медицинских процедур;
  • отдельных групп людей;
  • совокупностей ряда критериев.

К сожалению, человеку не дано напрямую чувствовать радиационное воздействие и, тем более, оценивать его уровень. Измерить радиацию и определить ее различные характеристики можно только посредством специальных приборов - дозиметров.

Дозиметры в тех или иных разновидностях представляют собой большую группу приборов, ориентированных на разные условия применения, имеющих разные показатели точности и другие характеристики.

Устройства «ДО-РА»

Хотя многие считают необходимым следить на радиоактивным фоном, даже самый простой прибор для измерения радиации - устройство не очень удобное для постоянного ношения при себе.

Наш проект предлагает иное и самое эффективное решение - уникальный дозиметр радиации «ДО-РА», позволяющий проводить замеры непосредственно со своего мобильного устройства. Данный измеритель радиации устанавливается на ваше устройство как наружный блок или может быть интегрирован во внутреннюю схему. В дополнение к нему поставляется программное обеспечение для работы. При использовании дозиметров и ПО вам не понадобится совершать какие-то специальные действия для осуществления замеров. Датчик и ПО сами будут проводить измерение радиации по заданной программе или по автоматическим настройкам.

Навигация по статье:

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.

Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения , иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

    0,57 мкЗв/час

  • В последующие года, радиационный фон должен быть не выше  0,12 мкЗв/час


  • предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников , является

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м 2)

Для оценки влияния радиации на вещество (не живые ткани) , применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани , применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется - поглощенной дозой .

Поглощенная доза - это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется - Грей (Гр).

1 Грей - это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза - это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется - Кулон/кг (Кл/кг) .

1 Кл/кг= 3,88*10 3 Р

Используемая внесистемная единица экспозиционной дозы - Рентген (Р):

1 Р = 2,57976*10 -4 Кл/кг

Доза в 1 Рентген - это образование 2,083*10 9 пар ионов на 1см 3 воздуха

Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения . То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза - это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется - Зиверт (Зв) .

Используемая внесистемная единица эквивалентной дозы - Бэр (бэр) : 1 Зв = 100 бэр.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение "эквивалентной дозы радиации":

Эквивалентная доза радиации - это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).



В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу , которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм

Наиболее объективная характеристика это - эквивалентная доза радиации , измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах - мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год .

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения , величиной 5 мЗв/год . Используемая формулировка в документах - "приемлемый уровень" , очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый .

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников . Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час . Это подробно рассмотрено в статье на этом сайте. Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год , а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются .

Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 - 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час .
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа - радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников , является 1 мЗв/год.

Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час , действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь , по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.

Для справки:

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода - это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.

Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.