Строение кристаллов. Кристаллы Что такое кристаллическая структура

Твердые тела разделяют на аморфные тела и кристаллы. Отличие вторых от первых состоит в том, что атомы кристаллов располагаются согласно некоторому закону, образуя тем самым трехмерную периодическую укладку, что называется – кристаллическая решетка.

Примечательно, что название кристаллов происходит от греческих слов «застывать» и «холод», и во времена Гомера этим словом называли горный хрусталь, который тогда считался «застывшим льдом». Сперва данным термином называли лишь ограненные прозрачные образования. Но позже, кристаллами стали звать также непрозрачные и не ограненные тела природного происхождения.

Кристаллическая структура и решетка

Идеальный кристалл представляется в виде периодически повторяющихся одинаковых структур – так называемых элементарных ячеек кристалла. В общем случае, форма такой ячейки – косоугольный параллелепипед.

Следует различать такие понятия как кристаллическая решетка и кристаллическая структура. Первая – это математическая абстракция, изображающая регулярное расположение неких точек в пространстве. В то время как кристаллическая структура – это реальный физический объект, кристалл, в котором с каждой точкой кристаллической решетки связана определенная группа атомов или молекул.

Кристаллическая структура граната — ромб и додекаэдр

Основным фактором, определяющим электромагнитные и механические свойства кристалла, является строение элементарной ячейки и атомов (молекул), связанных с ней.

Анизотропия кристаллов

Главное свойство кристаллов, отличающее их от аморфных тел – это анизотропия. Это означает, что свойства кристалла различны, в зависимости от направления. Так, например, неупругая (необратимая) деформация осуществляется лишь по определенным плоскостям кристалла, и в определенном направлении. В связи с анизотропией кристаллы по-разному реагируют на деформацию в зависимости от ее направления.

Однако, существуют кристаллы, которые не обладают анизотропией.

Виды кристаллов

Кристаллы разделяют на монокристаллы и поликристаллы. Монокристаллами называют вещества, кристаллическая структура которых распространяется на все тело. Такие тела являются однородными и имеют непрерывную кристаллическую решетку. Обычно, такой кристалл обладает ярко выраженной огранкой. Примерами природного монокристалла являются монокристаллы каменной соли, алмаза и топаза, а также кварца.

Немало веществ имеют кристаллическую структуру, хотя обычно не имеют характерной для кристаллов формы. К таким веществам относятся, например, металлы. Исследования показывают, что такие вещества состоят из большого количества очень маленьких монокристаллов — кристаллических зерен или кристаллитов. Вещество, состоящее из множества таких разноориентированных монокристаллов, называется поликристаллическим. Поликристаллы зачастую не имеют огранки, а их свойства зависят от среднего размера кристаллических зерен, их взаимного расположения, а также строения межзеренных границу. К поликристаллам относятся такие вещества как металлы и сплавы, керамики и минералы, а также другие.

Молекул в кристалле. Кристаллическая структура определяется кристаллической решёткой, симметрией кристалла, формой и размерами его элементарной ячейки, типом и координатами атомов в ячейке. В идеальном кристалле содержание и положения атомов во всех ячейках одинаковые. За исключением химического состава все остальные характеристики кристаллической структуры определяются дифракционными методами - рентгеновского структурного анализа, электронографии, нейтронографии структурной. В кристаллах твёрдых растворов и при других отклонениях химического состава от стехиометрии структурный анализ высокой точности позволяет определить и уточнить соответствующие параметры.

При падении на монокристалл излучения с длиной волны порядка межатомных расстояний возникает дифракционная картина, которая состоит из дискретного набора пиков. Положения пиков определяются кристаллической решёткой, а их интенсивности зависят от типа атомов и их расположения в элементарной ячейке кристалла. Наличие в кристалле элементов симметрии проявляется в равенстве интенсивностей соответствующих пиков. Исключение составляет то, что дифракционная картина всегда центросимметрична (независимо от наличия или отсутствия центра симметрии в кристалле). Вследствие этого с помощью рентгеноструктурного анализа можно различить только 122 группы из 230 пространственных (фёдоровских) групп симметрии кристаллов. Наличие (или отсутствие) центра симметрии в кристалле можно установить по статистике распределения интенсивностей дифракционных пиков. Экспериментальное определение отсутствия центра симметрии возможно, если в кристалле есть атомы с аномальным рассеянием используемого излучения. Наиболее сложной является методика определения координат атомов в элементарной ячейке кристалла.

Рассмотрим кристаллическую структуру некоторых элементов периодической системы. Так, в двух модификациях полония различной симметрии содержится по 1 атому в элементарной ячейке. В элементарных ячейках кристаллов калия, цинка, молибдена и ряда других элементов содержится по 2 атома, в ячейке теллура - 3, а в двух модификациях марганца по 20 и 58 атомов в ячейке соответственно. В кристаллах неорганических и органических соединений могут находиться от единиц до сотен атомов в ячейке. В кристаллах белков от тысяч до сотни тысяч атомов, а в закристаллизованных вирусах ещё на 2-3 порядка больше.

Рассмотрим кристаллическую структуру кристаллов различной природы. Кристаллы ниобата лития LiNbO 3 широко применяются в лазерной технике и оптике. На рисунке 1 представлены два изображения его кристаллической структуры. В первом случае атомы - шарики. Крупные анионы кислорода не позволяют увидеть общую организацию строения кристалла. Л. Полинг предложил изображать неорганические структуры в форме полиэдров, вершины которых являются центрами анионов, а внутри полиэдров находится соответствующий катион. В представленном на рисунке 1, б ниобате лития это октаэдры и .

Кристаллы семейства ниобата стронция-бария Sr 1-x Ba x Nb 2 О 6 характеризуются нелинейными оптическими, пиро и пьезоэлектрическими свойствами (смотри Пироэлектрики, Пьезоэлектричество), которыми можно целенаправленно управлять, меняя соотношение стронция и бария. На рисунке 2 представлена кристаллическая структура этих кристаллов, из которой видно, что часть атомов стронция занимает собственную позицию, а в другой позиции статистически расположены атомы бария и стронция, координаты которых несколько различаются.

Кристаллические структуры органических соединений обычно представляют собой плотную упаковку молекул, связанных слабыми ван-дер-ваальсовыми и, возможно, водородными связями. Кристаллы органических соединений находят применение в технике, однако часто их получают только для того, чтобы рентгеновскими методами установить атомное строение молекул, так как органические соединения в растворах (а биологически активные соединения в организме) действуют в качестве отдельных молекул. Структуры молекул антибиотиков - аналогов энниатина В и споридесмолида представлены на рисунке 3. Первое соединение является препаратом для избирательного транспорта катионов через биологические мембраны, а второе - лишено этого свойства из-за внутримолекулярных водородных связей, хотя обе молекулы циклические и состоят из 6 аминокислотных остатков. Различие в строении молекул установлено по кристаллической структуре соответствующих кристаллов.

Современный структурный анализ высокой точности позволяет определять не только координаты атомов, но и параметры тепловых колебаний атомов с учётом анизотропии и ангармонизма этих колебаний. Для не очень сложных соединений рентгеноструктурным анализом можно установить распределение электронной плотности в их кристаллах. Структурные методы чувствительны к нарушению стехиометрии химического состава кристалла и к его всевозможным дефектам. Обширный материал о структурах кристаллических веществ представлен в электронных базах данных (смотри Кристаллохимия).

Лит.: Белов Н. В. Структура ионных кристаллов и металлических фаз. М., 1947; он же. Структурная кристаллография. М., 1951; Китайгородский А. И. Органическая кристаллохимия. М., 1947; Федоров Е. С. Симметрия и структура кристаллов. М.; Л., 1949; Бландел Т., Джонсон Л. Кристаллография белка. М., 1979.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА , расположение атомов кристаллич. в-ва в пространстве. наиб. характерное св-во кристаллической структуры - трехмерная периодичность (см. Кристаллическое состояние). Обычно, говоря о кристаллической структуре, подразумевают среднее во времени расположение атомных ядер (т. наз. статич. модель); более полная информация включает сведения об амплитудах и частотах колебаний атомов (динамич. модель), а также о распределении электронной плотности в межъядерном пространстве. Изучение кристаллических структур и их связи со св-вами в-в составляет предмет кристаллохимии . Геом. характеристики кристаллической структуры, данные о распределении электронной плотности , амплитуды колебаний атомов (точнее, среднеквадратичные смещения от положений равновесия) находят с помощью дифракционных методов исследования (рентгеноструктурного анализа, нейтронографии и электронографии кристаллов), частоты колебаний - методами спектроскопии (ИК, комбинац. рассеяния, неупругого рассеяния нейтронов). Моделирование кристаллической структуры. Идеальная кристаллическая структура характеризуется бесконечной пространств. решеткой, т.е. состоит из идентичных элементарных ячеек. Последние имеют форму параллелепипедов со сторонами а, b, с и углами a , b , g (параметры решетки) и соприкасаются целыми гранями. В реальных кристаллах кристаллическая структура всегда искажена дефектами , а также наличием пов-сти кристалла . Иногда вместо термина "кристаллическая структура" употребляют термин "кристаллич. решетка"; предпочтительнее, однако, придавать последнему иное содержание (см. Кристаллы). Чтобы описать статич. модель кристаллической структуры, необходимо указать ее симметрию , выражаемую одной из пространственных (федоровских) групп, параметры решетки и координаты атомных ядер в ячейке; эти данные позволяют вычислить межатомные расстояния и валентные углы . Первичная трактовка такой модели при наличии между атомами ковалентных связей состоит в том, что атомы соединяют валентными штрихами в соответствии с классич. теорией хим. строения. Межатомные расстояния указывают правильный способ проведения валентных штрихов: обычно расстояние А - В, соответствующее ковалентной связи , существенно короче, чем кратчайшее расстояние между валентно не связанными атомами А и В. Если ковалентные связи отсутствуют (превалируют ионные, металлич. или ван-дер-ваальсовы межатомные взаимод.), модель кристаллической структуры представляют в виде плотной упаковки , образованной шарами одинакового размера (простые в-ва) или шарами неск.

Рис. 1. Эллипсоиды тепловых колебаний атомов в структуре m -ацетилен-бис(циклопентадиенникеля) при 300 К (а) и 77 К (6). В центре молекула ацетилена , по бокам - молекулы циклопентадиена.

сортов (напр., анионы образуют упаковку, катионы располагаются в ее пустотах). Учет трехмерного распределения электронной плотности р в пространстве декартовых координат х, у, z приводит к модели кристаллической структуры, согласно к-рой атомные ядра "погружены" в непрерывно распределенный с плотностью р электронный заряд. Совр. прецизионный рентгеноструктурный анализ позволяет экспериментально изучать особенности ф-ции r (х, у, z) и определять изменение электронной плотности атомов в кристалле в сравнении с электронной плотностью r 0 валентно не связанных атомов , получаемой в результате квантовохим. расчетов. Эти данные м. б. полезны для установления областей локализации валентных и неподеленных электронных пар , для обнаружения переноса заряда и др. особенностей строения в-в с ковалентными связями , а также в-в, в к-рых направленные межатомные взаимод. отсутствуют. Для отражения динамики атомов в кристаллической структуре в гармонич. приближении атомы изображают в виде "тепловых эллипсоидов", к-рые имеют след. физ. смысл: с фиксир. вероятностью р в любой момент времени атомное ядро находится внутри или на пов-сти такого эллипсоида (рис. 1). Направление наиб. вытянутости эллипсоида соответствует направлению, в к-ром атом совершает максимальные по амплитуде колебания, направление наиб. сжатия соответствует минимальным по размаху колебаниям. Обычно производят нормировку на вероятность р= 1 / 2 . При данной р размеры эллипсоидов зависят от т-ры. Чтобы количественно охарактеризовать форму и ориентацию атомных тепловых эллипсоидов, для каждого атома указывают 6 независимых компонентов симметричного тензора 2-го ранга, значения к-рых определяют по данным рентгеноструктурного исследования. Описанная динамич. модель не дает сведений о мгновенной структуре кристалла и о последоват. смене мгновенных структур. Информацию такого рода можно получить из спектров неупругого рассеяния нейтронов . Классификация кристаллических структур. В принципе каждому кристаллич. в-ву присуща своя структура. Однако часто разные в-ва имеют кристаллические структуры, одинаковые с точностью до подобия (т. наз. изоструктурность). Иногда такие в-ва способны образовывать смешанные кристаллы (см. Изоморфизм). С др. стороны, одно и то же хим. соед. в разных термодинамич. условиях и при разных способах получения может иметь разные кристаллические структуры (см. Полиморфизм). Кристаллические структуры очень многообразны - от простых (напр., у алмаза) до чрезвычайно сложных (напр., у бора). Изучены кристаллические структуры неск. десятков тысяч в-в, включая белки и др. сложные прир. соед. Для неск. сотен кристаллич. в-в (как неорг., так и орг.) изучено распределение электронной плотности в кристаллах . К ристаллические структуры делят нагомодесмические (координационные) и гетеродесмические. В первых все атомы соединены одинаковыми хим. связями, образующими пространств. каркас (напр., алмаз , галогениды щелочных металлов). Для вторых характерно наличие структурных фрагментов, внутри к-рых атомы соединены наиб. прочными (чаще всего ковалентными) связями; атомы , принадлежащие разл. фрагментам, связаны существенно слабее. Фрагменты могут представлять собой конечные группировки атомов ("острова"), цепи, слои, каркасы; соотв. выделяют островные, цепочечные, слоистые и каркасные кристаллические структуры. Островными кристаллическими структурами обладают почти все орг. соед., а также галогены , О 2 , S, (NH 4) 2 SO 4 и др. Роль островов играют молекулы (см. Молекулярные кристаллы) или многоатомные ионы . Цепочечную кристаллическую структуру имеет, напр., одна из модификаций Se, в к-рой атомы связаны в бесконечные спирали . Слоистое строение имеют графит , BN, MoS 2 и др. Пример каркасной кристаллической структуры - кристаллы СаТiO 3: атомы Ti и О, соединенные ковалентными связями , образуют ажурный каркас, в полостях к-рого расположены атомы Са. Известны кристаллические структуры, в к-рых сосуществуют структурные фрагменты разных типов. Так, кристаллы комплексного соед. N(CH 3) 4 построены из "островов" - ионов N(CH 3) 4 и цепей, образованных атомами Мn, связанными мостиковыми атомами Cl. Часто встречаются кристаллические структуры с неполной упорядоченностью, в к-рых отдельные атомы или структурные фрагменты статистически занимают неск. возможных положений (напр., статистич. наложение слоев в CdI 2). В нек-рых кристаллических структурах при достаточно высокой т-ре отдельные группы атомов или даже целые молекулы находятся в состоянии почти свободного или заторможенного вращения. По характеру связи между атомами или структурными фрагментами различают ковалентные кристаллы , ионные кристаллы , металлические кристаллы и ван-дер-ваальсовы кристаллы . Последняя группа включает, в частности, молекулярные кристаллы . Это деление (как и деление хим. связи на типы) условно, однако типичные представители разных групп резко различаются по св-вам, напр. по энергии структуры (энергия, необходимая для разъединения

Различные типы кристаллов и возможное расположение узлов в пространственной решетке изучает кристаллография. В физике кристаллические структуры рассматривают не с точки зрения их геометрии, а по характеру сил, действующих между частицами кристалла, т. е. по типу связей между частицами. По характеру сил, которые действуют между частицами, находящимися в узлах решетки кристалла, различают четыре типичные кристаллические структуры - ионную, атомную, молекулярную и металлическую. Выясним, в чем заключается сущность различия между этими структурами.

Ионная кристаллическая структура характеризуется наличием положительных и отрицательных ионов в узлах решетки. Силами, удерживающими ионы в узлах такой решетки, являются силы электрического притяжения и отталкивания между ними. На рис. 11.6, а изображена кристаллическая решетка хлористого натрия (поваренной соли), а на рис. 11.6, б - упаковка ионов в такой решетке.

Разноименно заряженные ионы в ионной решетке расположены ближе друг к другу, чем одноименно заряженные, поэтому силы притяжения между разноименными ионами преобладают над силами отталкивания одноименных ионов. Этим и обусловливается значительная прочность кристаллов с ионной решеткой.

При плавлении веществ с ионной кристаллической решеткой из узлов решетки в расплав переходят ионы, которые становятся подвижными носителями зарядов. Поэтому такие расплавы являются хорошими проводниками электрического тока. Это справедливо и для водных растворов кристаллических веществ с ионной решеткой

Например, раствор поваренной соли в воде является хорошим проводником электрического тока.

Атомная кристаллическая структура характеризуется наличием нейтральных атомов в узлах решетки, между которыми имеется ковалентная связь. Ковалентной называется такая связь, при которой каждые два соседних атома удерживаются рядом силами притяжения, возникающими при взаимном обмене двумя валентными электронами между этими атомами.

Здесь надо иметь в виду следующее. Современный уровень физики позволяет рассчитать вероятность пребывания электрона в той или иной области пространства, занятого атомом. Эту область пространства можно изобразить в виде электронного облака, которое гуще там, где электрон чаще бывает, т. е. где больше вероятность пребывания электрона (рис. 11.7, а).

Электронные облака валентных электронов двух атомов, образующих молекулу с ковалентной связью, перекрываются. Это означает, что оба валентных электрона (по одному от каждого атома) обобществляются, т. е. принадлежат обоим атомам одновременно, и большую часть времени проводят между атомами, связывая их в молекулу (рис. 11.7, б). Примером такого рода молекул являются молекулы

Ковалентная связь также соединяет в молекулы и разные атомы:

Очень многие твердые вещества имеют атомную кристаллическую структуру. На рис. 11.8 показана решетка алмаза и упаковка атомов в ней. В этой решетке каждый атом образует ковалентные связи с четырьмя соседними атомами. Германий и кремний тоже имеют решетку типа алмаза. Ковалентная связь создает

весьма прочные кристаллы. Поэтому такие вещества обладают большой механической прочностью и плавятся лишь при высоких температурах.

Молекулярная кристаллическая структура отличается пространственной решеткой, в узлах которой находятся нейтральные молекулы вещества. Силами, удерживающими молекулы в узлах этой решетки, являются силы межмолекулярного взаимодействия. На рис. 11.9 показана кристаллическая решетка твердой двуокиси углерода («сухого льда»), в узлах которой находятся молекулы (сами-то молекулы образованы ковалентными связями). Силы межмолекулярного взаимодействия сравнительно слабые, поэтому твердые вещества с молекулярной решеткой легко разрушаются при механическом воздействии и имеют низкую температуру плавления. Примерами веществ с молекулярной пространственной решеткой являются лед, нафталин, твердый азот и большинство органических соединений.

Металлическая кристаллическая структура (рис. 11.10) отличается наличием в узлах решетки положительно заряженных ионов металла. У атомов всех металлов валентные электроны, т. е. наиболее удаленные от ядра атома, слабо связаны с атомами. Электронные облака таких периферийных электронов перекрывают сразу много атомов в кристаллической решетке металла. Это означает, что валентные электроны в кристаллической решетке металла не могут принадлежать одному и даже двум атомам, а обобществляются сразу многими атомами. Такие электроны практически могут беспрепятственно двигаться между атомами.

Таким образом, каждый атом в твердом металле теряет свои периферийные электроны, и атомы превращаются в положительно заряженные ионы. Оторвавшиеся от них электроны движутся между ионами по всему объему кристалла и являются тем «цементом», который удерживает ионы в узлах решетки и придает большую прочность металлу.

В первом приближении хаотическое движение свободных электронов в металле можно считать подобным движению молекул идеального газа. Поэтому совокупность свободных электронов в

металле иногда называют электронным газом и при расчетах применяют к нему формулы, выведенные для идеального газа. (Рассчитайте таким путем среднюю скорость теплового движения электронов в металле при 0°С.) Существованием электронного газа в металлах объясняются как высокая теплопроводность, так и высокая электропроводность всех металлов.


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кристамллы (от греч. ксэуфбллпт, первоначально -- лёд, в дальнейшем -- горный хрусталь, кристалл) -- твёрдые тела, в которых атомырасположены закономерно, образуя трёхмерно-периодическую пространственную укладку -- кристаллическую решётку.

Кристаллы -- это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений, составляющих вещество частиц (атомов, молекул, ионов).

Свойства:

Однородность. Это свойство проявляется в том, что два одинаковых элементарных объема кристаллического вещества, одинаково ориентированные в пространстве, но вырезанные в разных точках этого вещества, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, удельный вес, твердость, теплопроводность, электропроводность и др.

Необходимо иметь в виду, что реальные кристаллические вещества очень часто содержат постоянные примеси и включения, искажающие их кристаллические решетки. Поэтому абсолютной однородности в реальных кристаллах часто не бывает.

Анизотропия кристаллов

Многим кристаллам присуще свойство анизотропии, то есть зависимость их свойств от направления, тогда как в изотропных веществах (большинстве газов, жидкостей, аморфных твёрдых телах) или псевдоизотропных (поликристаллы) телах свойства от направлений не зависят. Процесс неупругого деформирования кристаллов всегда осуществляется по вполне определённым системам скольжения, то есть лишь по некоторым кристаллографическим плоскостям и лишь в некотором кристаллографическом направлении. В силу неоднородного и неодинакового развития деформации в различных участках кристаллической среды между этими участками возникает интенсивное взаимодействие через эволюцию полей микронапряжений.

В то же время существуют кристаллы, в которых анизотропия отсутствует.

В физике мартенситной неупругости накоплен богатый экспериментальный материал, особенно по вопросам эффектов памяти формы и пластичности превращения. Экспериментально доказано важнейшее положение кристаллофизики о преимущественном развитии неупругих деформаций почти исключительно посредством мартенситных реакций. Но принципы построения физической теории мартенситной неупругости неясны. Аналогичная ситуация имеет место в случае деформации кристаллов механическим двойникованием.

Значительные успехи достигнуты в изучении дислокационной пластичности металлов. Здесь не только понятны основные структурно-физические механизмы реализации процессов неупругой деформации, но и созданы эффективные способы расчёта явлений.

Способнось самоотгоняться - свойство кристаллов образовывать грани при свободном росте.Так. если выточенный из какого-либо вещества шарик, например поваренная соль, поместить в ее пересыщенный раствор, то через некоторе время этот шарик примет форму куба. В противоположенность этому стеклянный шарик не изменит свою форму так как аморфное вещество не может самоотгоняться.

Постоянная точка плавления. Если нагревать кристаллическое тело, то температура его будет повышаться до определенного предела, при дальнейшем нагревании вещество начнет плавиться, а температура некоторре время останется постоянной, так как все тепло пойдет на разрушение кристаллической решетки. Температура, при которой начинается плавленеиЮ называется температурой плавления.

Систематика кристаллов

Кристаллическая структура

Кристаллическая структура, будучи индивидуальной для каждого вещества, относится к основным физико-химическим свойствам этого вещества. Кристаллимческая структумра -- такая совокупность атомов, в которой с каждой точкой кристаллической решётки связана определённая группа атомов, называемая мотивной единицей, причем все такие группы одинаковые по составу, строению и ориентации относительно решётки. Можно считать, что структура возникает в результате синтеза решётки и мотивной единицы, в результате размножения мотивной единицы группой трансляции.

В простейшем случае мотивная единица состоит из одного атома, например в кристаллах меди или железа. Возникающая на основе такой мотивной единицы структура геометрически весьма сходна с решёткой, но все же отличается тем, что составлена атомами, а не точками. Часто это обстоятельство не учитывают, и термины «кристаллическая решётка» и «кристаллическая структура» для таких кристаллов употребляются как синонимы, что нестрого. В тех случаях, когда мотивная единица более сложна по составу -- состоит из двух или большего числа атомов, геометрического сходства решётки и структуры нет, и смещение этих понятий приводит к ошибкам. Так, например, структура магния или алмаза не совпадает геометрически с решёткой: в этих структурах мотивные единицы состоят из двух атомов.

Основными параметрами, характеризующими кристаллическую структуру, некоторые из которых взаимосвязаны, являются следующие:

§ тип кристаллической решётки (сингония, решётка Браве);

§ число формульных единиц, приходящихся на элементарную ячейку;

§ пространственная группа;

§ параметры элементарной ячейки (линейные размеры и углы);

§ координаты атомов в ячейке;

§ координационные числа всех атомов.

Структурный тип

Кристаллические структуры, обладающие одинаковой пространственной группой и одинаковым размещением атомов по кристаллохимическим позициям (орбитам), объединяют в структурные типы.

Наиболее известны структурные типы меди, магния, б-железа, алмаза (простые вещества), хлорида натрия, сфалерита, вюрцита, хлорида цезия, флюорита (бинарные соединения),перовскита, шпинели (тройные соединения).

Кристаллическая решётка

Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку. Если кристаллические решётки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например, методами рентгеновского структурного анализа.

Размещено на http://www.allbest.ru/

Рис. Кристаллическая решетка

Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны ромбическая и моноклинная сера, графит и алмаз, которые являются гексагональной и кубической модификациями углерода, среди сложных веществ -- кварц, тридимит и кристобалит представляют собой различные модификации диоксида кремния.

Виды кристаллов

Следует разделить идеальный и реальный кристалл.

Идеальный кристалл

Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.

Реальный кристалл

Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство -- закономерное положение атомов в кристаллической решётке.

Дефекты кристаллической решетки (реальное строение кристаллов)

В реальных кристаллах всегда имеются отклонения от идеального порядка в расположении атомов, называемые несовершенствами или дефектами решетки. По геометрии вызываемых ими нарушений решетки дефекты подразделяют на точечные, линейные и поверхностные.

Точечные дефекты

На рис. 1.2.5 показаны различные виды точечных дефектов. Это вакансии - пустые узлы решетки, «свои» атомы в междоузлии и атомы примесей в узлах решетки и междоузлиях. Основная причина образования первых двух видов дефектов - движение атомов, интенсивность которого возрастает с повышением температуры.

Рис. 1.2.5. Типы точечных дефектов кристаллической решетки: 1 - вакансия, 2 - атом в междоузлии, 3 и 4 - атомы примесей в узле и междоузлии соответственно

Вокруг любого точечного дефекта возникает местное искажение решетки радиусом R в 1…2 периода решетки (см. рис. 1.2.6), поэтому, если таких дефектов много, они влияют на характер распределения межатомных сил связи и, соответственно, на свойства кристаллов.

Рис. 1.2.6. Локальное искажение кристаллической решетки вокруг вакансии (а) и примесного атома в узле решетки (б)

Линейные дефекты

Линейные дефекты называются дислокациями. Их появление вызвано наличием в отдельных частях кристалла «лишних» атомных полуплоскостей (экстраплоскости). Они возникают в процессе кристаллизации металлов (из-за нарушения порядка заполнения атомных слоев) или в результате их пластического деформирования, как показано на рис. 1.2.7.

Рис. 1.2.7. Образование краевой дислокации () в результате частичного сдвига верхней части кристалла под действием усилия: АВСD - плоскость скольжения; EFGН - экстраплоскость; EН - линия краевой дислокации

Видно, что под влиянием сдвигающего усилия произошел частичный сдвиг верхней части кристалла вдоль некоторой плоскости скольжения («легкого сдвига») АВСD. В результате образовалась экстраплоскость EFGH. Поскольку она не имеет продолжения вниз, вокруг ее края EH возникает упругое искажение решетки радиусом в несколько межатомных расстояний (т.е. 10 -7 см - см. тема 1.2.1), протяженность же этого искажения во много раз больше (может доходить до 0,1…1 см).

Такое несовершенство кристалла вокруг края экстраплоскости является линейным дефектом решетки и называется краевой дислокацией.

Важнейшие механические свойства металлов - прочность и пластичность (см. тема 1.1) - определяются наличием дислокаций и их поведением при нагружении тела.

Остановимся на двух особенностях механизма перемещения дислокаций.

1. Дислокации могут весьма легко (при малой нагрузке) передвигаться вдоль плоскости скольжения посредством «эстафетного» перемещения экстраплоскости. На рис. 1.2.8 показан начальный этап такого движения (двумерный рисунок в плоскости, перпендикулярной линии краевой дислокации).

Рис. 1.2.8. Начальный этап эстафетного перемещения краевой дислокации (). А-А - плоскость скольжения, 1-1 экстраплоскость (исходная позиция)

Под действием усилия атомы экстраплоскости (1-1) отрывают от плоскости (2-3) атомы (2-2), расположенные выше плоскости скольжения. В результате эти атомы образуют новую экстраплоскость (2-2); атомы «старой» экстраплоскости (1-1) занимают освободившиеся места, достраивая плоскость (1-1-3). Этот акт означает исчезновение «старой» дислокации, связанной с экстраплоскостью (1-1), и возникновение «новой», связанной с экстраплоскостью (2-2), или, другими словами, передачу «эстафетной палочки» - дислокации на одно межплоскостное расстояние. Такое эстафетное перемещение дислокации будет продолжаться до тех пор, пока она не дойдет до края кристалла, что будет означать сдвиг его верхней части на одно межплоскостное расстояние (т.е. пластическую деформацию).

Этот механизм не требует больших усилий, т.к. состоит из последовательных микросмещений, затрагивающих лишь ограниченное число атомов, окружающих экстраплоскость.

2. Очевидно, однако, что такая легкость скольжения дислокаций будет наблюдаться лишь в том случае, когда на их пути отсутствуют какие - либо препятствия. Такими препятствиями являются любые дефекты решетки (особенно линейные и поверхностные!), а также частицы других фаз, если они присутствуют в материале. Эти препятствия создают искажения решетки, преодоление которых требует дополнительных внешних усилий, поэтому могут заблокировать движение дислокаций, т.е. сделать их неподвижными.

Поверхностные дефекты

Все промышленные металлы (сплавы) являются поликристаллическими материалами, т.е. состоят из огромного количества мелких (обычно 10 -2 …10 -3 см), хаотически ориентированных кристалликов, называемых зернами. Очевидно, что периодичность решетки, присущая каждому зерну (монокристаллу), в таком материале нарушена, поскольку кристаллографические плоскости зерен повернуты относительно друг друга на угол б (см. рис. 1.2.9), величина которого колеблется от долей до нескольких десятков градусов.

Рис. 1.2.9. Схема строения границ зерен в поликристаллическом материале

Граница между зернами представляет собой переходный слой шириной до 10 межатомных расстояний, обычно с неупорядоченным расположением атомов. Это место скопления дислокаций, вакансий, примесных атомов. Поэтому в объеме поликристаллического материала границы зерен являются двумерными, поверхностными дефектами.

Влияние дефектов решетки на механические свойства кристаллов. Пути повышения прочности металлов.

Прочность - это способность материала сопротивляться деформации и разрушению под действием внешней нагрузки.

Под прочностью кристаллических тел понимают их сопротивление приложенной нагрузке, стремящейся сдвинуть или, в пределе, оторвать одну часть кристалла относительно другой.

Наличие в металлах подвижных дислокаций (уже в процессе кристаллизации возникает до 10 6 …10 8 дислокаций в сечении, равном 1см 2) приводит к их пониженной сопротивляемости нагружению, т.е. высокой пластичности и невысокой прочности.

Очевидно, что наиболее эффективным способом повышения прочности будет удаление дислокаций из металла. Однако такой путь не технологичен, т.к. бездислокационные металлы удается получать лишь в виде тонких нитей (так называемых «усов») диаметром в несколько микрон и длиной до 10 мкм.

Поэтому практические способы упрочнения основаны на торможении, блокировании подвижных дислокаций путем резкого увеличения числа дефектов решетки (в первую очередь линейных и поверхностных!), а также создании многофазных материалов

Такими традиционными методами повышения прочности металлов являются:

– пластическое деформирование (явление наклепа или нагартовки),

– термическая (и химико-термическая) обработка,

– легирование (введение специальных примесей) и, наиболее общий подход, - это создание сплавов.

В заключение следует отметить, что повышение прочности, основанное на блокировании подвижных дислокаций, приводит к снижению пластичности и ударной вязкости и, соответственно, эксплуатационной надежности материала.

Поэтому вопрос о степени упрочнения необходимо решать индивидуально, исходя из назначения и условий работы изделия.

Полиморфизм в буквальном смысле слова означает многоформенность, т.е. явление, когда одинаковые по химическому составу вещества кристаллизуются в различных структурах и образуют кристаллы различных сингогий. Например алмаз и графит имеют одинаковый химический состав, но различные структуры, оба минерала резко отличаются по физ. свойствам. Другим примером может служить кальцит и арагонит - они имеют одинаковый состав СаСО 3 , но представляют различные полиморфные модификации.

Явление полиморфизма связаны с условиями образования кристаллических веществ и обусловлены тем, что в различных термодинамических условиях устойчивыми являются только определенные структуры. Так, металлические олово (так называемое белое олово) при понижении температуры ниже -18 С 0 становится неустойчивым и рассыпается образуя «серое олово» уже иной структуры

Изоморфизм. Сплавы металлов представляют собой кристаллические структуры переменного состава, в которых атомы одного элемента располагаются в промежутках кристаллической решетки другого. Это так называемые твердые растворы второго рода.

В отличие от твердых растворов второго рода в твердых растворах первого рода атомы или ионы одного кристаллического вещества могут замещаться атомами или ионами другого. Последние располагаются в узлах кристаллической решетки. Подобного рода растворы называются изоморфными смесями.

Условия необходимые для проявления изоморфизма:

1) Замещаться могут только ионы одного знака, т.е., катион на катион, а анион на анион

2) Замещаться могут только атомы или ионы близкого размера, т.е. разница величины ионных радиусов не должна превышать при совершенном изоморфизме 15% и несовершенном 25% (например Са 2+ на Mg 2+)

3) Замещаться могут только ионы, близкие по степени поляризации (т.е. по степени ионности-ковалентности связи)

4) Замещаться могут только элементы, имеющие одинаковое координационное число в данной кристаллической структуре

5) изоморфные замещения должны происходить таким образом. Чтобы не нарушался электростатический баланс кристаллической решетки.

6) изоморфные замещения протекают в сторону приращения энергии решетки.

Типы изоморфизма. Различают 4 типа изоморфизма:

1) изовалентный изоморфизм характеризуется тем, что в этом случае происходит ионов одинаковой валентности причем разница в размерах ионных радиусов не должна быть более 15%

2) гетеровалентный изоморфизм. При этом происходит замещение ионов различной валентности. При таком замещении один ион не может замещаться другим без того, чтобы нарушился электростатический баланс кристаллической решетки, поэтому при гетеровалентном изоморфизме замещается не ион, как при гетеровалентном, а группа ионов определенной валентности на другую группу ионов при сохранении той же суммарной валентности.

Необходимо в этом случае всегда помнить что замещение иона одной валентности на ион другой всегда связано с компенсацией валентности. Эта компенсация может происходить как в катионной, так и в анионной части соединений. При этом необходимо соблюдение следующих условий:

А) сумма валентностей замещаемых ионов должна быть равна сумме валентностей замещающих ионов.

Б) сумма ионных радиусов замещаемых ионов должна быть близка к сумме ионных радиусов замещающих ионов и может отличаться от нее не более чем на 15% (для совершенного изоморфизма)

3) изоструктурный. Происходит замещение не одного иона на другой или группы ионов на другую группу, а замещение целого «блока» одной кристаллической решетки на другой такой же «блок». Это может происходить только в том случае, если структуры минералов однотипны и имеют близкие размеры элементарных ячеек.

4) изоморфизм особого рода.

кристалл решётка дефект дислокация

Размещено на Allbest.ru

Подобные документы

    Характеристика пьезоэлектрического эффекта. Изучение кристаллической структуры эффекта: модельное рассмотрение, деформации кристаллов. Физический механизм обратного пьезоэлектрического эффекта. Свойства пьезоэлектрических кристаллов. Применение эффекта.

    курсовая работа , добавлен 09.12.2010

    Сведения о колебаниях кристаллических решёток, функции, описывающие их физические величины. Кристаллографические системы координат. Расчет энергии взаимодействия атомов в ковалентных кристаллах, спектра колебаний кристаллической решётки вольфромата бария.

    дипломная работа , добавлен 09.01.2014

    Прохождение тока через электролиты. Физическая природа электропроводности. Влияние примесей, дефектов кристаллической структуры на удельное сопротивление металлов. Cопротивление тонких металлических пленок. Контактные явления и термоэлектродвижущая сила.

    реферат , добавлен 29.08.2010

    Понятие и классификация дефектов в кристаллах: энергетические, электронные и атомные. Основные несовершенства кристаллов, образование точечных дефекто, их концентрация и скорость перемещения по кристаллу. Диффузия частиц за счет движений вакансий.

    реферат , добавлен 19.01.2011

    Сущность полиморфизма, история его открытия. Физические и химические свойства полиморфных модификаций углерода: алмаза и графита, их сравнительный анализ. Полиморфные превращения жидких кристаллов, тонких пленок дийодида олова, металлов и сплавов.

    курсовая работа , добавлен 12.04.2012

    Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат , добавлен 26.04.2010

    История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие , добавлен 14.12.2010

    Кристаллизация как процесс перехода металла из жидкого состояния в твердое с образованием кристаллической структуры. Схема образования шва при дуговой сварке. Ключевые факторы и условия, необходимые для начала роста кристаллов из жидкого металла.

    презентация , добавлен 26.04.2015

    Изучение структуры (образование кристаллитами, расположенными хаотическим образом) и способов получения (охлаждение расплава, напыление из газовой фазы, бомбардировка кристаллов нейронами) стекол. Ознакомление с процессами кристаллизации и стеклования.

    реферат , добавлен 18.05.2010

    Дефекты реальных кристаллов, принцип работы биполярных транзисторов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Поверхностные явления в полупроводниках. Параметры транзистора и коэффициент передачи тока эмиттера.