12 защита от проявлений атмосферного электричества. Молниезащита, атмосферное и статическое электричество. Атмосферное электричество: молниезащита

Совокупность явлений, результатом которых является образование, сбережение и разрядка свободных электрозарядов на поверхности диэлектриков или изолированных проводниках, называют статическим электричеством. Образующийся заряд может сохраняться и накапливать достаточно продолжительное время. Процесс получения любой поверхностью или телом определенного заряда (положительного или отрицательного) называется электризацией. Статические электрозаряды чаще всего образуются из-за трения друг о друга или о металл твердых материалов, не проводящих ток. Относительно земли напряжение во время статической электризации часто может достигать 100 тыс. вольт.

Разряды статического электричества могут стать причиной возникновения сильных пожаров и взрывов, а также иметь негативное влияние на здоровье человека, как при непосредственном контакте, так и из-за опасного электрического поля образующегося вокруг заряженного тела. Выделяющейся энергии достаточно много для мгновенного для воспламенения пыле и газовоздушных смесей.

Специалисты рекомендуют применять заземления, нейтрализаторы (индукционные, радиоактивные и высоковольтные), увлажнители воздуха, специальные экраны и антиэлектростатические вещества для эффективной защиты от статических зарядов. Сотрудникам, в качестве профилактики, выдают антистатическую спецодежду и токопроводящую обувь имеющую сопротивление подошвы до 108 Ом.

Атмосферное электричество: молниезащита

Наиболее часто атмосферное электричество концентрируется в кучевых (грозовых) облаках и разряжается через молнии, которые имеют мощное поражающее действие. Прямое их попадание в дом может полностью разрушить здание, убить людей, находящихся внутри или привести к сильному пожару или техногенным авариям.

После того как Франклин объяснил всему миру природу молний человечество постоянно работает над усовершенствованием методов по молниезащите. В настоящее время на смену простым стальным или медным громоотводам с токоотводом и заземлением пришли инновационные активные молниеприемники. Они за счет ионизации воздуха вокруг себя самостоятельно притягивают к себе разряды молний. Современная система молниезащиты объекта включает защиту от прямых ударов молнии и вторичных ее проявлений.

Защита от статического электричества и молниезащита

Для предотвращения неприятных последствий от образования статических зарядов и молний необходимо при проектировании и эксплуатации объектов осуществлять комплекс мер, направленных на их защиту от статического электричества и молниезащиту .

Основные здания и сооружения не принимаются в эксплуатацию без защиты от статического электричества и молниезащиты . Промышленные здания и помещения, оборудование и приборы, различные коммуникации в соответствии с их классификацией по ПУЭ должны иметь молниезащиту І, ІІ или ІІІ категории, а также защиту от статических разрядов для взрыво- и пожароопасных помещений, зон открытых установок, имеющие класс B-I, B-I6, В-II и B-IIa.

Защита от статического электричества обеспечивается благодаря таким мероприятиям, как:

  • проверка исправности и безотказности работы и непосредственного наличия заземлений, систем отвода зарядов и нейтрализации;
  • очистка газвоздушных смесей от взвешенных примесей;
  • четкое выполнение технологических инструкций (недопущение разбрызгивания, дробления или распыления материалов, увеличения их скорости движения и т.п.)
  • металлическое и неметаллическое оборудование в одном помещении должны быть в одной электроцепи, которая соединяется с контуром заземления минимум в 2 точках;
  • подача трапа к самолету, открытие автоцистерн и т.п. мероприятия проводится только после присоединения к ним заземления;
  • используемые резиновые шланги для налива жидких веществ оснащаются проволокой и наконечниками из меди.

Элементы молниезащиты должны регулярно проверяться и по необходимости ремонтироваться. Специалисты рекомендуют проводить проверку:

  • надежности связи между токоведущими частями молниезащиты,
  • наличия механических, коррозионных повреждений частей системы защиты;
  • сопротивления всех заземлителей.

Статическое электричество и средства защиты от него

Статическое электричество возникает при трении восходящих тепловых слоев воздуха, трении воздушных масс.

Другой источник электризации атмосферы -- в космосе, за пределами однородной атмосферы. Потоки ультрафиолетового и мягкого рентгеновского излучений от Солнца направляются к Земле. Они не равнозначны по плотности, интенсивности и энергии. Достигая, верхних слоев атмосферы, ультрафиолетовое и рентгеновское излучения ионизируют атомы и молекулы атмосферы, превращая их из нейтральных в электрически заряженные. Кроме того, возникает множество иных заряженных элементарных частиц, обладающих различными энергиями. Плотность этих частиц и число их в единице объема различны.

На некотором расстоянии от Земли образуется сплошной объемный ионизированный слой, охватывающий Землю. Первый такой ионизированный стабильный слой охватывает Землю на высоте 110-120 км, он имеет относительно небольшую толщину и стабильные границы. Второй слой с переменной толщиной находится на высоте 180-300 км. Кроме этих постоянных электрически заряженных слоев имеются "плавающие", локально образующиеся области заряженных частиц. Ими то, в основном, и можно объяснить резко изменяющиеся значения поля в различных районах земного шара.

Магнитное поле окружающей человека среды складывается, в основном, из двух составляющих:

  • * магнитного поля Земли
  • * магнитных полей, создаваемых электрифицированным транспортом, работающими электродвигателями и генераторами, линиями электропередачи и т.д.

Именно созданная человеком электротехника чаще всего и оказывает вредное воздействие. По мере удаления от источника электромагнитное поле ослабевает. Поэтому одним из способов защиты является удаленное расположение источников сильных электромагнитных волн.

Другим способом защиты является снижение электромагнитного излучения самого источника путем совершенствования конструкции.

Но, пожалуй, самым распространенным на сегодняшний день способом защиты от действия электромагнитных полей является экранирование. Принцип его состоит в том, что объект защиты окружают со стороны действия электромагнитного поля материалом, который полностью или частично поглощает электромагнитные волны. Различные материалы по-разному препятствуют проникновению электромагнитных волн.

Бывает, что, наоборот, экранируют источник электромагнитных полей. Что именно экранировать определяется количеством и размерами источников электромагнитных полей и объектов защиты. Так, например, проще экранировать автомобильный радиоприемник, нежели сам автомобиль, и, напротив -- проще экранировать блок питания компьютера, нежели каждый каскад, подверженный влиянию электромагнитных полей, излучаемых блоком питания.

Лучше всего использовать для экранирования свинец или алюминий, так как они сильнее остальных поглощают электромагнитные поля.

Для защиты от статического электричества в помещениях два раза в день проводят влажную уборку и проветривание. При этом накопившиеся заряды выветриваются вместе с водяными парами. Однако в помещениях, где находятся проводники с высоким напряжением коэфициент влажности не должен превышать определенного значения, так как при нарушении изоляции проводников, находящегося поблизости человека может поразить электрическим током.

Статическое электричество может накапливаться не только на предметах, но и на самом человеке, особенно на одежде и волосяном покрове. Оно наносит вред функционированию нервной системы, всячески раздражает.

После принятия душа человек ощущает себя заметно легче. Частично это объясняется тем, что статическое электричество, накопившееся на теле за весь день, смывается водой.

Атмосферное электричество и средства защиты от него

Не только во время грозы в атмосфере существует электричество. Оно, вообще, присуще атмосфере и характеризует ее состояние. В начале XIX века экспериментально было обнаружено, что идеально изолированный от Земли заряженный проводник постепенно теряет свой заряд. Был установлен и закон потери заряда во времени. Позже это явление было объяснено. Оказывается, в окружающем нас воздухе есть зарядоносители -- заряженные ионы. Они-то и являются причиной того, что идеально изолированный от Земли заряженный проводник теряет свой заряд.

Зарядоносителями - ионами могут быть заряженные остатки атомов и молекул, которые делятся на легкие, средние и тяжелые ионы. Это микрочастицы водяного тумана, дождевые капли, мелкодисперсная пыль, микроорганизмы. В окружающей человека среде зарядоносители непрерывно передвигаются по всем направлениям. Наблюдение, проведенные у земной поверхности с помощью вольтметра с большим внутренним сопротивлением, показали, что градиент потенциала находится в пределах 120-150 В/м.

В результате экспериментальных наблюдений была установлена плотность электрических зарядов на поверхности Земли, равная 7*105 элементарных зарядов. Зная площадь поверхности Земли, несложно определить общий заряд Земли -- он равен 5*107 Кл. Количество электричества на поверхности Земли непрерывно меняется. Электрические заряды перемещаются с поверхности Земли в верхние слои атмосферы и наоборот -- из верхних слоев атмосферы стремятся к ее поверхности. Если перемещение электрических зарядов оценить значением тока, то этот ток составит в среднем 1500 А. Электрический ток, равный 1500 А, постоянно циркулирует между верхними слоями атмосферы и поверхностью нашей планеты. Поверхность Земли обладает отрицательным зарядом.

Токи проводимости, создаваемые ионами разной природы и разного знака, в целом движутся к Земле, неся положительный заряд. То же можно сказать и о макрозаряженных частицах, выпадающих в виде осадков -- дождя, снега.

Поверхность Земли неоднородна. Резко выраженную ее неоднородность создает человек, строя различные здания, заводские трубы и т.д. Во время грозы, а иногда и задолго до ее развития, когда напряженность электрического поля в атмосфере становится особенно большой (при бурях, снежных метелях, сильных ветрах), и происходят большие перемещения воздушных масс, можно видеть светящиеся заряды, возникающие на остриях, острых углах и иных предметах, возвышающихся над Землей. Эти разряды известны под названием огней Эльма. Чаще всего светящиеся разряды возникают в горах на острых выступах скал, вершинах деревьев, верхушках опор линий электропередачи. В низменных местах они замечены на молниеотводах, выступах зданий, мачтах кораблей, антеннах. В исключительных случаях светящиеся разряды наблюдаются и на животных, и на вытянутой руке человека. Их появление сопровождается потрескиванием продолжительностью от нескольких секунд до часов.

Подобные явления представляют собой различные формы коронного разряда, который образуется около светящегося предмета в виде своеобразной короны. Возникновение их обусловлено резким увеличением напряженности электрического поля, в 1000 раз превышающим средние значения 120-1250 В/м. Высокая напряженность поля уже при нормальном давлении вызывает ионизацию, сопровождающуюся появлением электронов. Электроны появляются вследствие вторичной ионизации, вызываемой ионами, находящимися в воздухе вблизи острия и разгоняемыми электрическим полем.


Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

Явление статической электризации наблюдается в следующих случаях:

В потоке и при разбрызгивании жидкости;

В струе газа или пара;

При соприкосновении и последующем удалении двух твердых разнородных тел (контактная электризация).

Электризация тела человека происходит при работе с наэлектризованными изделиями и материалами. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Считается, что энергия разряда с тела человека достаточна для зажигания практически всех газо-, паровоздушных и некоторых пылевоздушных горючих смесей.

Действие статического электричества смертельной опасности для человека не представляет. Искровой разряд статического электричества человек ощущает как укол или судорогу. При внезапном уколе может возникнуть испуг и вследствие рефлекторных движений человек может непроизвольно сделать движения, приводящие к падению с высоты, попаданию в опасную зону машин и др.

Длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, отрицательно сказывается на его психофизическом состоянии.

Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-88 «Электрические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (№ 1757-77).

Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей устанавливается равным 60 кВ/м в течение 1 часа.

Защите от статического электричества подлежат все промышленные, опытно-промышленные и лабораторные установки, в которых применяются или получаются вещества, способные при перемещении или переработке подвергаться электризации, с образованием опасных потенциалов (вещества и материалы с удельным объемным сопротивлением выше 10 Ом∙м), а также взрыво- и пожароопасные производства, отнесенные по классификации «Правил устройства электроустановок» к классам В-I, В-Iа, В-Iб, В-Iг, В-II, В-IIа. В помещениях и зонах, которые не относятся к указанным классам, защита должна осуществляться лишь на тех участках, где статическое электричество отрицательно влияет на технологический процесс и качество продукции.

Меры защиты от статического электричества:

Предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций;

Уменьшение удельных обычных и поверхностных электрических сопротивлений (увлажнение воздуха от 65% до 67%, если это допустимо по условиям технологического процесса; химическая обработка поверхности электропроводными покрытиями; нанесение на поверхность антистатических веществ; добавление антистатических присадок в горючие диэлектрические жидкости);

Снижение интенсивности зарядов статического электричества (достигается подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения);

Отвод статического электричества, накапливающегося на людях;

Устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

Обеспечение работающих токопроводящей обувью, антистатическими халатами.

Атмосферное статическое электричество

Заряды статического атмосферного электричества возникают в результате разряда молний. Молния поражает в первую очередь самые высокие сооружения и заземленные, т.к. их проводимость стремится к бесконечности. Зашита от прямого удара молнии организуется с помощью молниеотводов, которые состоят из трех элементов:

1)Молниеприемник (принимает разряд молнии)

2)Токоотвод (должен направить принятый разряд в землю)

3)Защитное заземление (отдает заряд земле)

Сопротивление молниеотвода должна быть ≤10 Ом

В зависимости от конструкции молниеприемника молниеотводы бывают:

1) Стержневые

2) Тросовые

3) Сетчатые, устанавливаются на сооружениях с шли кровлей, ячейка сетки должна быть ≤ 5х5 м

Молниеприемником может служить металлическая кровля, но в этом случае необходимо не менее двух токоотводов. При высоте сооружения более 50 м допускается установка молниеприемника на самом сооружении, но в этом случае необходимо предусмотреть не менее 2х токоотводов, которые должны присоединиться к самостоятельному заземленному контуру. Площадь сечения стержневого молниеприемника должна быть не менее 100 мм 2 , а площадь сечения тросового молниеприемника не менее 35мм 2

На предприятиях по производству строительных материалов и при изготовлении конструкция широко используют и получают в больших количествах вещества и материалы, обладающие диэлекртическими свойствами, что способствует возникновению зарядов статического электричества.

Статич. электр-во образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. При этом на трущихся веществах могут накапливаться электр-е заряды, которые легко стекают в землю, если тело является проводником электричества и оно заземлено. На диэлекртиках электрич-е заряды удерживаются продолжительное время, вследствие чего они получили название статич. электричества.

Процесс возникновения и накопления электр-их зарядов в веществах называют электризацией.

По существующим представлениям статич-е электр-во возникает в результате сложных процессов, связанных с перераспределением электронов и ионов при соприкосновении двух поверхностей неоднородных жидких или твердых веществ. На поверхности соприкосновения образуется двойной электрический слой.

В производственных условиях возникновение и накопление статич. эл-ва происходит:

1) при пневмотранспорте пылевидных и сыпучих материалов, при движении их в аппаратах; дроблении, перемешивании и просеивании; при перемешивании в смесителях;

2) при сливе, наливе и перекачке светлых нефтепродуктов по трубопроводам и резиновым шлангам в резервуарные емкости;

3) при транспортировании сжатых и сжиженных газов по трубам и истечении их через отверстия;

4) в процессах обработки материалов, а также при применении ременных передач и транспортных лент.

5) при движении автотранспортера, тележек на резиновых шинах и людей по сухому изолирующему покрытию.

Для защиты от статического электричества применяют мероприятия и средства, направленные на предотвращение или уменьшение интенсивности процесса образования зарядов, а также обеспечивающие условия для быстрой релаксации зарядов.

К первой группе мероприятий относится уменьшение скоростей перемещения твердых, сыпучих и жидких материалов. Многие жидкости, например, нефтепродукты, легко электризуются. Подачу таких жидкостей необходимо производить таким образом, чтобы исключить их бурное перемешивание и разбрызгивание. Сливная труба должна доходить до дна бака, а струя направляется вдоль оси стенки. Если в емкости нет остатка жидкости, то скорость первоначального заполнения не должна превышать 0,7 м/с, а затем 4 м/с.

Ко второй группе относятся следующие средства. Суда, цистерны, трубопровода заземляются, причем сопротивление заземления должно составлять не более 100 Ом. Для этого используют установленные заземлители электроустановок. Автоцистерны заземляют с помощью металлической цепи, постоянно соприкасающейся с землей, а для железнодорожных цистерн заземлителем является рельсовый путь.

При увеличении влажности соприкасающихся поверхностей водяная пленка экранирует эмиссию электронов и обеспечивает растекание зарядов по поверхности чел, что резко снижает потенциалы зарядов. Для нейтрализации образовавшихся зарядов используют ионизаторы воздуха, которые создают ионы обоих знаков. Ионы нужного знака притягиваются и нейтрализуют образовавшиеся заряды.

Защита человека от статического электричества обеспечивается использованием антистатической одежды и обуви.

Требуемая степень защиты зданий и сооружений от воздействия атмосферного электричества, от взрывопожароопасности разрабатывается на основе классификации этих объектов. Установлены три категории молниезащиты (I, II, Ш) и два типа (А, Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к объекту не менее 99,5% молний, а типа Б - не менее 95%. Объекты I и II категорий (взрывоопасные) защищаются от всех четырех видов воздействия атмосферного электричества (п. 5.4), а объекты III категории - пожароопасные и высотные (жилые здания, башни, вышки, трубы) - защищаются от прямых ударов молний и от заноса высоких потенциалов внутрь зданий.

Защита от электростатической индукции заключается в заземлении металлического оборудования, расположенного внутри и вне здания. Для этого применяют специальное заземление или заземление электроустановок с сопротивлением не более 10 Ом.

Защита от электромагнитной индукции осуществляется установкой металлических перемычек между трубопроводами и протяженными коммуникациями, которые сближаются на расстояния до 10 см.

Защита от заноса высоких потенциалов внутрь зданий обеспечивается посредством присоединения металлокоммуникаций на входе в здание к защитному заземлению.

Для защиты объектов от прямых ударов молнии выполняются молниеотводы стержневого, тросового, сетчатого типа. Молниеотвод стержневого типа (рис. 6.12) состоит из опоры (1), молниеприемникa (2), токовода (3) и заземлителя (4). Зона защиты молниеотвода - это часть пространства, в пределах которого обеспечивается защита от прямых ударов молнии. Для стержневого молниеотвода эта зона примерно ограничена конусом, основание которого имеет радиус r = 1,5 h.