Когда выносишь за скобки общий множитель. Приведение дробей к общему знаменателю

Чичаева Дарина 8в класс

В работе ученица 8 класса расписала правило разложения многочлена на множители путём вынесения общего множителя за скобки с подробным ходом решения множества примеровм по данной теме. На каждый разобранный пример предложено по 2 примера для самостоятельного решения, к которым есть ответы. Работа поможет изучить данную тему тем ученикам, которые по каким-то причинам её не усвоил при прохождении программного материала 7 класса и (или) при повторении курса алгебры в 8 классе после летних каникул.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа №32

«Ассоциированная школа ЮНЕСКО «Эврика-развитие»

г. Волжского Волгоградской области

Работу выполнила:

Ученица 8В класса

Чичаева Дарина

г. Волжский

2014

Вынесение общего множителя за скобки

  • - Одним из способов разложения многочлена на множители является вынесение общего множителя за скобки;
  • - При вынесении общего множителя за скобки применяется распределительное свойство ;
  • - Если все члены многочлена содержат общий множитель , то этот множитель можно вынести за скобки .

При решении уравнений, в вычислениях и ряде других задач бывает полезно заменить многочлен произведением нескольких многочленов (среди которых могут быть и одночлены). Представление многочлена в виде произведения двух или нескольких многочленов называют разложение многочлена на множители.

Рассмотрим многочлен 6a 2 b+15b 2 . Каждый его член можно заменить произведением двух множителей, один из которых равен 3b: →6a 2 b = 3b*2a 2 , + 15b 2 = 3b*5b →из этого мы получим: 6a 2 b+15b 2 =3b*2a 2 +3b*5b.

Полученное выражение на основе распределительного свойства умножения можно представить в виде произведения двух множителей. Один из них – общий множитель 3b , а другой – сумма 2а 2 и 5b→ 3b*2a 2 +3b*5b=3b(2a 2 +5b) →Таким образом, мы разложили многочлен: 6a 2 b+15b 2 на множители, представив его в виде произведения одночлена 3b и многочлена 2a 2 +5b. Данный способ разложения многочлена на множители называют вынесение общего множителя за скобки.

Примеры:

Разложите на множители:

А) kx-px.

Множитель х х выносим за скобки.

kx:x=k; px:x=p.

Получим: kx-px=x*(k-p).

б) 4a-4b.

Множитель 4 есть и в 1 слагаемом и во 2 слагаемом. Поэтому 4 выносим за скобки.

4а:4=а; 4b:4=b.

Получим: 4a-4b=4*(a-b).

в) -9m-27n.

9m и -27n делятся на -9 . Поэтому выносим за скобки числовой множитель -9.

9m: (-9)=m; -27n: (-9)=3n.

Имеем: -9m-27n=-9*(m+3n).

г) 5y 2 -15y.

5 и 15 делятся на 5; y 2 и у делятся на у.

Поэтому выносим за скобки общий множитель 5у .

5y 2 : 5у=у; -15y: 5у=-3.

Итак: 5y 2 -15y=5у*(у-3).

Замечание: Из двух степеней с одинаковым основанием выносим степень с меньшим показателем.

д) 16у 3 +12у 2 .

16 и 12 делятся на 4; y 3 и y 2 делятся на y 2 .

Значит, общий множитель 4y 2 .

16y 3 : 4y 2 =4y; 12y 2 : 4y 2 =3.

В результате мы получим: 16y 3 +12y 2 =4y 2 *(4у+3).

е) Разложите на множители многочлен 8b(7y+a)+n(7y+a).

В данном выражении мы видим, присутствует один и тот же множитель (7y+a) , который можно вынести за скобки. Итак, получим: 8b(7y+a)+n(7y+a)=(8b+n)*(7y+a).

ж) a(b-c)+d(c-b).

Выражения b-c и c-b являются противоположными. Поэтому, чтобы сделать их одинаковыми, перед d меняем знак «+» на «-»:

a(b-c)+d(c-b)=a(b-c)-d(b-c).

a(b-c)+d(c-b)=a(b-c)-d(b-c)=(b-c)*(a-d).

Примеры для самостоятельного решения:

  1. mx+my;
  2. ах+ау;
  3. 5x+5y ;
  4. 12x+48y;
  5. 7ax+7bx;
  6. 14x+21y;
  7. –ma-a ;
  8. 8mn-4m 2 ;
  9. -12y 4 -16y;
  10. 15y 3 -30y 2 ;
  11. 5c(y-2c)+y 2 (y-2c);
  12. 8m(a-3)+n(a-3);
  13. x(y-5)-y(5-y);
  14. 3a(2x-7)+5b(7-2x);

Ответы.

1) m(х+у); 2) а(х+у); 3) 5(х+у); 4) 12(х+4у); 5) 7х(a+b); 6) 7(2х+3у); 7) -а(m+1); 8) 4m(2n-m);

9) -4y(3y 3 +4); 10) 15у 2 (у-2); 11) (y-2c)(5с+у 2 ); 12) (a-3)(8m+n); 13) (y-5)(x+y); 14) (2x-7)(3a-5b).

Знаменателем арифметической дроби a / b называют число b, показывающее размеры долей единицы, из которых составлена дробь. Знаменателем алгебраической дроби A / B называют алгебраическое выражение B. Для выполнения арифметических действий с дробями их необходимо привести к наименьшему общему знаменателю.

Вам понадобится

  • Для работы с алгебраическими дробями при нахождении наименьшего общего знаменателя необходимо знать методы разложения многочленов на множители.

Инструкция

Рассмотрим приведение к наименьшему общему знаменателю двух арифметических дробей n/m и s/t, где n, m, s, t – целые числа. Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся на m и на t. Но стараются привести к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей m и t данных дробей. Наименьшее кратное (НОК) чисел – это наименьшее , делящееся одновременно на все заданные числа. Т.е. в нашем случае необходимо найти наименьшее общее кратное чисел m и t. Обозначается как НОК (m, t). Далее дроби умножаются на соответствующие : (n/m) * (НОК (m, t) / m), (s/t) * (НОК (m, t) / t).

Приведем нахождения наименьшего общего знаменателя трех дробей: 4/5, 7/8, 11/14. Для начала разложим знаменатели 5, 8, 14 : 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Далее вычисляем НОК (5, 8, 14), перемножая все числа, входящие хотя бы в одно из разложений. НОК (5, 8, 14) = 5 * 2^3 * 7 = 280. Заметим, что если множитель встречается в разложении нескольких чисел (множитель 2 в разложении знаменателей 8 и 14), то берем множитель в большей степени (2^3 в нашем случае).

Итак, общий получен. Он равен 280 = 5 * 56 = 8 * 35 = 14 * 20. Здесь мы получаем числа, на которые надо умножить дроби с соответствующими знаменателями, чтобы привести их к наименьшему общему знаменателю. Получаем 4/5 = 56 * (4/5) = 224 / 280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280.

Приведение к наименьшему общему знаменателю алгебраических дробей выполняется по аналогии с арифметическими . Для наглядности рассмотрим задачу на примере. Пусть даны две дроби (2 * x) / (9 * y^2 + 6 * y + 1) и (x^2 + 1) / (3 * y^2 + 4 * y + 1). Разложим на множители оба знаменателя. Заметим, что знаменатель первой дроби представляет собой полный квадрат: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. Для

Для решения примеров с дробями необходимо уметь находить наименьший общий знаменатель. Ниже приведена подробная инструкция.

Как найти наименьший общий знаменатель – понятие

Наименьший общий знаменатель (НОЗ) простыми словами – это минимальное число, которое делится на знаменатели всех дробей данного примера. Другими словами его называют Наименьшим Общим Кратным (НОК). НОЗ используют только в том случае, если знаменатели у дробей различны.

Как найти наименьший общий знаменатель – примеры

Рассмотрим примеры нахождения НОЗ.

Вычислить: 3/5 + 2/15.

Решение (Последовательность действий):

  • Смотрим на знаменатели дробей, убеждаемся, что они разные и выражения максимально сокращены.
  • Находим наименьшее число, которое делится и на 5, и на 15. Таким числом будет 15. Таким образом, 3/5 + 2/15 = ?/15.
  • Со знаменателем разобрались. Что будет в числителе? Помочь выяснить это нам поможет дополнительный множитель. Дополнительный множитель – это число, получившееся при делении НОЗ на знаменатель конкретной дроби. Для 3/5 дополнительный множитель равен 3, так как 15/5 = 3. Для второй дроби дополнительным множителем будет 1, так как 15/15 = 1.
  • Выяснив дополнительный множитель, умножаем его на числители дробей и складываем получившиеся значения. 3/5 + 2/15 = (3*3+2*1)/15 = (9+2)/15 = 11/15.


Ответ: 3/5 + 2/15 = 11/15.

Если в примере складываются или вычитаются не 2, а 3 или больше дробей, то НОЗ нужно искать уже для стольких дробей, сколько дано.

Вычислить: 1/2 – 5/12 + 3/6

Решение (последовательность действий):

  • Находим наименьший общий знаменатель. Минимальным числом, делящимся на 2, 12 и 6 будет 12.
  • Получим: 1/2 – 5/12 + 3/6 = ?/12.
  • Ищем дополнительные множители. Для 1/2 – 6; для 5/12 – 1; для 3/6 – 2.
  • Умножаем на числители и приписываем соответствующие знаки: 1/2 – 5/12 + 3/6 = (1*6 – 5*1 + 2*3)/12 = 7/12.

Ответ: 1/2 – 5/12 + 3/6 = 7/12.

В этой статье мы остановимся на вынесении за скобки общего множителя . Для начала разберемся, в чем состоит указанное преобразование выражения. Дальше приведем правило вынесения общего множителя за скобки и подробно рассмотрим примеры его применения.

Навигация по странице.

Например, слагаемые в выражении 6·x+4·y имеют общий множитель 2 , который не записан явно. Его можно увидеть лишь после того, как представить число 6 в виде произведения 2·3 , а 4 в виде произведения 2·2 . Итак, 6·x+4·y=2·3·x+2·2·y=2·(3·x+2·y) . Еще пример: в выражении x 3 +x 2 +3·x слагаемые имеют общий множитель x , который становится явно виден после замены x 3 на x·x 2 (при этом мы использовали ) и x 2 на x·x . После вынесения его за скобки получим x·(x 2 +x+3) .

Отдельно скажем про вынесение минуса за скобки. Фактически вынесение минуса за скобки означает вынесение за скобки минус единицы. Для примера вынесем за скобки минус в выражении −5−12·x+4·x·y . Исходное выражение можно переписать в виде (−1)·5+(−1)·12·x−(−1)·4·x·y , откуда отчетливо виден общий множитель −1 , который мы и выносим за скобки. В результате придем к выражению (−1)·(5+12·x−4·x·y) , в котором коэффициент −1 заменяется просто минусом перед скобками, в итоге имеем −(5+12·x−4·x·y) . Отсюда хорошо видно, что при вынесении минуса за скобки в скобках остается исходная сумма, в которой изменены знаки всех ее слагаемых на противоположные.

В заключение этой статьи заметим, что вынесение за скобки общего множителя применяется очень широко. Например, с его помощью можно более рационально вычислять значения числовых выражений . Также вынесение за скобки общего множителя позволяет представлять выражения в виде произведения, в частности, на вынесении за скобки основан один из методов разложения многочлена на множители .

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.

В реальной жизни нам необходимо оперировать обыкновенными дробями. Однако чтобы сложить или вычесть дроби с разными знаменателями, например, 2/3 и 5/7, нам потребуется найти общий знаменатель. Приведя дроби к общему знаменателю, мы сможем легко осуществить операции сложения или вычитания.

Определение

Дроби - одна из самых сложных тем в начальной арифметике, и рациональные числа пугают школьников, которые встречаются с ними впервые. Мы привыкли оперировать с числами, записанными в десятичном формате. Куда проще сходу сложить 0,71 и 0,44, чем суммировать 5/7 и 4/9. Ведь для суммирования дробей их необходимо привести к общему знаменателю. Однако дроби куда точнее представляют значение величин, чем их десятичные эквиваленты, а в математике представление рядов или иррациональных чисел в виде дроби становится приоритетной задачей. Такая задача носит название «приведение выражения к замкнутому виду».

Если и числитель, и знаменатель дроби умножить или разделить на один и тот же коэффициент, то значение дроби не изменится. Это одно из самых важных свойств дробных чисел. К примеру, дробь 3/4 в десятичной форме записывается как 0,75. Если умножить числитель и знаменатель на 3, то получим дробь 9/12, что точно также равняется 0,75. Благодаря этому свойству мы можем умножать разные дроби таким образом, чтобы они все имели одинаковые знаменатели. Как это сделать?

Поиск общего знаменателя

Наименьший общий знаменатель (НОЗ) - это наименьшее общее кратное для всех знаменателей выражения. Найти такое число мы можем тремя способами.

Использование максимального знаменателя

Это один из самых простых, но трудоемких методов поиска НОЗ. Вначале из знаменателей всех дробей выписываем самое большое число и проверяем его делимость на меньшие числа. Если делится, то наибольший знаменатель и есть НОЗ.

Если в предыдущей операции числа делятся с остатком, то необходимо самое большое из них умножить на 2 и повторить проверку на делимость. Если оно делится без остатка, то новый коэффициент становится НОЗ.

Если нет, то самый большой знаменатель умножается на 3, 4 , 5 и так далее, пока не будет найдено наименьшее общее кратное для нижних частей всех дробей. На практике это выглядит так.

Пусть у нас есть дроби 1/5, 1/8 и 1/20. Проверяем 20 на делимость 5 и 8. 20 не делится на 8. Умножаем 20 на 2. Проверяем 40 на делимость 5 и 8. Числа делятся без остатка, следовательно, НОЗ (1/5, 1/8 и 1/20) = 40, а дроби превращаются в 8/40, 5/40 и 2/40.

Последовательный перебор кратных

Второй способ - это простой перебор кратных и выбор из них наименьшего. Для поиска кратных мы умножаем число на 2, 3, 4 и так далее, поэтому количество кратных устремляется в бесконечность. Ограничить эту последовательность можно пределом, которое представляет собой произведение заданных чисел. К примеру, для чисел 12 и 20 НОК находится следующим образом:

  • выписываем числа, кратные 12 - 24, 48, 60, 72, 84, 96, 108, 120;
  • выписываем числа, кратные 20 - 40, 60, 80, 100, 120;
  • определяем общие кратные - 60, 120;
  • выбираем наименьшее из них - 60.

Таким образом, для 1/12 и 1/20 общим знаменателем будет 60, а дроби преобразуются в 5/60 и 3/60.

Разложение на простые множители

Этот способ нахождения НОК наиболее актуален. Данный метод подразумевает разложение всех чисел из нижних частей дробей на неделимые множители. После этого составляется число, которое содержит множители всех знаменателей. На практике это работает так. Найдем НОК для той же пары 12 и 20:

  • раскладываем на множители 12 - 2 × 2 × 3;
  • раскладываем 20 - 2 × 2 × 5;
  • объединяем множители таким образом, чтобы они содержали в себе числа и 12, и 20 - 2 × 2 × 3 × 5;
  • перемножаем неделимые и получаем результат - 60.

В третьем пункте мы объединяем множители без повторов, то есть двух двоек достаточно для формирования 12 в комбинации с тройкой и 20 - с пятеркой.

Наш калькулятор позволяет определить НОЗ для произвольного количества дробей, записанных как в обыкновенной, так и в десятичной форме. Для поиска НОЗ вам достаточно ввести значения через табуляцию или запятую, после чего программа вычислит общий знаменатель и выведет на экран преобразованные дроби.

Пример из реальной жизни

Сложение дробей

Пусть в задаче по арифметике нам необходимо сложить пять дробей:

0,75 + 1/5 + 0,875 + 1/4 + 1/20

Решение вручную производилось бы следующим способом. Для начала нам необходимо представить числа в одной форме записи:

  • 0,75 = 75/100 = 3/4;
  • 0,875 = 875/1000 = 35/40 = 7/8.

Теперь у нас есть ряд обыкновенных дробей, которые необходимо привести к одинаковому знаменателю:

3/4 + 1/5 + 7/8 + 1/4 + 1/20

Так как у нас 5 слагаемых, проще всего использовать способ поиска НОЗ по наибольшему числу. Проверяем 20 на делимость остальными числами. 20 не делится на 8 без остатка. Умножаем 20 на 2, проверим 40 на делимость - все числа делят 40 нацело. Это и есть наш общий знаменатель. Теперь для суммирования рациональных чисел нам необходимо определить дополнительные множители для каждой дроби, которые определяются как соотношение НОК к знаменателю. Дополнительные множители буду выглядеть так:

  • 40/4 = 10;
  • 40/5 = 8;
  • 40/8 = 5;
  • 40/4 = 10;
  • 40/20 = 2.

Теперь умножим числитель и знаменатель дробей на соответствующие дополнительные множители:

30/40 + 8/40 + 35/40 + 10/40 + 2/40

Для такого выражения мы можем легко определить сумму, равную 85/40 или 2 целых и 1/8. Это громоздкие вычисления, поэтому вы можете просто ввести данные задачи в форму калькулятора и сразу получить ответ.

Заключение

Арифметические операции с дробями - не слишком удобная вещь, ведь для поиска ответа приходится осуществлять множество промежуточных вычислений. Используйте наш онлайн-калькулятор для приведения дробей к общему знаменателю и быстрого решения школьных задач.