Критический уровень пдк тяжелых металлов. Влияние кадмия на живые организмы. Материалы и методы исследования

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

2.1.7. ПОЧВА, ОЧИСТКА НАСЕЛЕННЫХ МЕСТ, ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ САНИТАРНАЯ ОХРАНА ПОЧВЫ

Предельно допустимые концентрации (ПДК) химических веществ в почве

Гигиенические нормативы
ГН 2.1.7.2041-06

1. Подготовлены коллективом авторов в составе: Н.В. Русаков, И.А. Крятов, Н.И. Тонкопий, Ж.Ж. Гумарова, Н.В. Пиртахия (ГУ НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН); А.П. Веселое (Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека).

2. Рекомендованы к утверждению Бюро Комиссии по государственному санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол № 2 от 16 июня 2005 г.).

3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г. Онишенко 19 января 2006 г.

4. Введены в действие постановлением Главного государственного санитарного врача Российской Федерации от 23 января 2006 г. № 1 с 1 апреля 2006 г.

5. Введены взамен гигиенических нормативов «Перечень предельно допустимых концентраций (ПДК) и ориентировочно-допустимых количеств (ОДК) химических веществ в почве» № 6229-91 и ГН 2.1.7.020-94 (дополнение 1 к № 6229-91).

6. Зарегистрированы в Министерстве юстиции Российской Федерации (регистрационный номер 7470 от 7 февраля 2006 г.).

Федеральный закон Российской Федерации
«О санитарно-эпидемиологическом благополучии населения»
№ 52-ФЗ от 30 марта 1999 г.

«Государственные санитарно-эпидемиологические правила и нормативы (далее - санитарные правила) - нормативные правовые акты, устанавливающие санитарно-эпидемиологические требования (в том числе критерии безопасности и (или) безвредности факторов среды обитания для человека, гигиенические и иные нормативы), несоблюдение которых создает угрозу жизни или здоровью человека, а также угрозу возникновения и распространения заболеваний» (статья 1).

«Соблюдение санитарных правил является обязательным для граждан, индивидуальных предпринимателей и юридических лиц» (статья 39, п. 3).

ГЛАВНЫЙ ГОСУДАРСТВЕННЫЙ САНИТАРНЫЙ ВРАЧ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПОСТАНОВЛЕНИЕ

23.01.06 Москва №1

О введении в действие
гигиенических нормативов
ГН 2.1.7.2041-06

На основании Федерального закона от 30.03.1999 № 52-ФЗ «О санитарно-эпидемиологическом благополучии населения» (Собрание законодательства Российской Федерации, 1999, № 14, ст. 1650; 2003, № 2, ст. 167; № 27, ст. 2700; 2004, № 35, ст. 3607) и Положения о государственном санитарно-эпидемиологическом нормировании, утвержденного постановлением Правительства Российской Федерации от 24.07.2000 № 554 (Собрание законодательства Российской Федерации, 2000, № 31, ст. 3295) с изменениями, которые внесены постановлением Правительства Российской Федерации от 15.09.2005 № 569 (Собрание законодательства Российской Федерации, 2005, № 39, ст. 3953)

ПОСТАНОВЛЯЮ:

1. Ввести в действие с 1 апреля 2006 года гигиенические нормативы ГН 2.1.7.2041-06 «Предельно допустимые концентрации (ПДК) химических веществ в почве», утвержденные Главным государственным санитарным врачом Российской Федерации 19 января 2006 года.

Г.Г. Онищенко

УТВЕРЖДАЮ

Руководитель Федеральной службы
по надзору в сфере защиты прав
потребителей и благополучия человека,
Главный государственный санитарный
врач Российской Федерации

Г.Г. Онищенко

2.1.7. ПОЧВА, ОЧИСТКА НАСЕЛЕННЫХ МЕСТ, ОТХОДЫ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ, САНИТАРНАЯ ОХРАНА ПОЧВЫ

Предельно допустимые концентрации (ПДК) химических веществ в почве

Гигиенические нормативы
ГН 2.1.7.2041-06

I. Общие положения и область применения

1.1. Гигиенические нормативы "Предельно допустимые концентрации (ПДК) химических веществ в почве" (далее - нормативы) разработаны в соответствии с Федеральным законом от 30.03.1999 N 52-ФЗ "О санитарно-эпидемиологическом благополучии населения" (Собрание законодательства Российской Федерации, 1999, N 14, ст. 1650; 2003, N 2, ст. 167; N 27, ст. 2700; 2004, N 35) и Положением о государственном санитарно-эпидемиологическом нормировании, утвержденным постановлением Правительства Российской Федерации от 24.07.2000 N 554 (Собрание законодательства Российской Федерации, 2000, N 31, ст. 3295) с изменениями, которые внесены постановлением Правительства Российской Федерации от 15.09.2005 N 569 (Собрание законодательства Российской Федерации, 2005, N 39, ст. 3953)

1.2. Настоящие нормативы действуют на всей территории Российской Федерации и устанавливают предельные допустимые концентрации химических веществ в почве разного характера землепользования.

1.3. Нормативы распространяются на почвы населенных пунктов, сельскохозяйственных угодий, зон санитарной охраны источников водоснабжения, территории курортных зон и отдельных учреждений.

1.4. Настоящие нормативы разработаны на основе комплексных экспериментальных исследований опасности опосредованного воздействия вещества - загрязнителя почвы на здоровье человека, а также с учетом его токсичности, эпидемиологических исследований и международного опыта нормирования.

1.5. Соблюдение гигиенических нормативов является обязательным для граждан, индивидуальных предпринимателей и юридических лиц.

II. Предельно допустимые концентрации (ПДК) химических веществ в почве

Наименование вещества

Величина ПДК (мг/кг) с учетом фона (кларка)

Лимитирующий показатель вредности

Валовое содержание

Бенз/а/пирен

Общесанитарный

Воздушно-миграционный

Воздушно-миграционный

Общесанитарный

Ванадий+марганец

7440-62-2+7439-96-5

Общесанитарный

Диметилбензолы (1,2-диметилбензол; 1,3-диметилбензол; 1,4-диметилбензол)

Транслокационный

Комплексные гранулированные удобрения (КГУ)

Водно-миграционный

Комплексные жидкие удобрения (КЖУ)

Водно-миграционный

Марганец

Общесанитарный

Метаналь

Воздушно-миграционный

Метилбензол

Воздушно-миграционный

(1-метилэтенил)бензол

Воздушно-миграционный

(1-метилэтил)бензол

Воздушно-миграционный

(1-метилэтил)бензол + (1-метилэтенил)бензол

98-82-8 + 25013-15-4

С9Н12 + С9Н10

Воздушно-миграционный

Транслокационный

Нитраты (по NO3)

Водно-миграционный

Водно-миграционный

Общесанитарный

Транслокационный

Общесанитарный

Свинец + ртуть

7439-92-1 + 7439-97-6

Транслокационный

Общесанитарный

Серная кислота (по S)

Общесанитарный

Сероводород (по S)

Воздушно-миграционный

Суперфосфат (по Р2О5)

Транслокационный

Водно-миграционный

Фуран-2-карбальдегид

Общесанитарный

Хлорид калия (по К2О)

Водно-миграционный

Хром шестивалентный

Общесанитарный

Воздушно-миграционны

Этенилбензол

Воздушно-миграционны

Подвижная форма

Общесанитарный

Марганец, извлекаемый 0,1 н H2SO4:

Чернозем

Дерново-подзолистая:

Извлекаемый ацетатно-аммонийным буфером с рН 4,8:

Общесанитарный

Чернозем

Дерново-подзолистая:

Общесанитарный

Общесанитарный

Общесанитарный

Транслокационный

Хром трехвалентный5

Общесанитарный

Транслокационный

Водорастворимая форма

Транслокационный

Примечания.

1. КГУ - комплексные гранулированные удобрения состава N:P:K=64:0:15. ПДК КГУ контролируется по содержанию нитратов в почве, которое не должно превышать 76,8 мг/кг абсолютно сухой почвы.

КЖУ - комплексные жидкие удобрения состава N:P:K=10:34:0 ТУ 6-08-290-74 с добавками марганца не более 0,6% от общей массы. ПДК КЖУ контролируется по содержанию подвижных фосфатов в почве, которое не должно превышать 27,2 мг/кг абсолютно сухой почвы.

2. Нормативы мышьяка и свинца для разных типов почв представлены как ориентировочно допустимые концентрации (ОДК) в другом документе.

3. ПДК ОФУ контролируется по содержанию бенз/а/пирена в почве, которое не должно превышать ПДК бенз/а/пирена.

4. Подвижная форма кобальта извлекается из почвы ацетатно-натриевым буферным раствором с рН 3,5 и рН 4,7 для сероземов и ацетатно-аммонийным буферным раствором с рН 4,8 для остальных типов почв.

5. Подвижная форма элемента извлекается из почвы ацетатно-аммонийным буферным раствором с рН 4,8.

6. Подвижная форма фтора извлекается из почвы с рН £ 6,5 0,006 н НСl, с рН >6,5 - 0,03 н K2SO4.

Примечания к разделу II

Названия индивидуальных веществ в алфавитном порядке приведены, где это было возможно, в соответствии с правилами Международного союза теоретической и прикладной химии ИЮПАК (International Union of Pure Applied Chemistry, IUРАС) (графа 2) и обеспечены регистрационными номерами Chemical Abstracts Service (CAS) (графа 3) для облегчения идентификации веществ.

В графе 4 приведены формулы веществ.

Величины Нормативов приведены в миллиграммах вещества на килограмм почвы (мг/кг) - графа 5 - для валовых и подвижных форм их содержания в почве.

Указан лимитирующий показатель вредности (графа 6), по которому установлены нормативы: воздушно-миграционный (воздушно-мигр.), водно-миграционный (водно-мигр.), общесанитарный или транслокационный.

Для удобства пользования нормативами приведен указатель основных синонимов (прилож. 1), формул веществ (прилож. 2) и номеров CAS (прилож. 3).

1. ГОСТ 26204-84, ГОСТ 28213-84 «Почвы. Методы анализа».

2. Дмитриев М.Т., Казнина Н.И., Пинигина И.А. Санитарно-химический анализ загрязняющих веществ в окружающей среде: Справочник. М.: Химия, 1989.

3. Методика определения фурфурола в почве № 012-17/145 /МЗ УзССР от 24.03.87. Ташкент, 1987.

4. Методические указания по качественному и количественному определению канцерогенных полициклических углеводородов в продуктах сложного состава № 1423-76 от 12.05.76. М., 1976.

5. Методические указания по отбору проб из объектов внешней среды и подготовка их для последующего определения канцерогенных полициклических ароматических углеводородов: № 1424-76 от 12.05.76.

6. Предельно допустимые концентрации химических веществ в почве: № 1968-79 /МЗ СССР от 21.02.79. М., 1979.

7. Предельно допустимые концентрации химических веществ в почве: № 2264-80 от 30.10.80 /МЗ СССР. М., 1980.

Кадмий является одним из редких рассеянных элементов. Он мигрирует в горячих подземных водах с цинком и прочими элементами, подверженными к образованию природных сульфидов, теллуридов, сульфидов и сульфосолей и концентрируется в гидротемальных отложениях. В вулканических породах кадмий содержится в количестве до 0.2 мг на кг, в осадочных породах, в частности, в глинах – до 0.3 мг/кг, в известняках 0.035 мг/кг, в почве до 0.06 мг/кг.

Как кадмий поступает в воду?

Поступление кадмия в природные воды обусловлено процессом выщелачивания почв, медных и полиметаллических руд, в процессе разложения водных организмов, накапливающих кадмий. Растворенные формы кадмия- это органо-минеральные и минеральные комплексы. Сорбированные соединения кадмия представляют собой его основную взвешенную форму. Большая часть кадмия мигрирует в составе клеток гидробионатов.

Чем опасен кадмий в воде?

Кадмий является одним из наиболее токсичных тяжелых металлов. Российский СанПин присвоил ему статус «высокоопасных веществ», 2-й класс опасности. Наряду со многими другими тяжелыми металлами, кадмий способен накапливаться в организме. Понадобится от 10 до 35 лет для его полувыведения. В теле 50-летнего человека кадмий может содержаться в количестве от 30 до 50 г. Основные места накопления кадмия- почки, от 30 до 60% всего количества, и печень, от 20 до 25%. Оставшийся кадмий содержится в поджелудочной железе, трубчатых костях, селезенке, других тканях и органах.

Избыток кадмия при поступлении в организм может стать причиной развития гипертонии, поражения печени, анемии, эмфиземы легких, кардиопатии, деформации скелета, остеопороза. Соединения кадмия крайне опасны. Действие кадмия выражается в угнетении активности некоторых ферментных систем вследствие блокированияаминных, карбоксильных и SH-групп белковых молекул, а также ряда микроэлементов. При продолжительном воздействии кадмий провоцирует поражение легких и почек, ослабление костей.

Основные симптомы кадмиевого отравления:

  • Поражение центральной нервной системы;
  • Белок в моче;
  • Острые боли в костях;
  • Дисфункция половых органов;
  • Камни в почках.

Любая из химических форм кадмия представляет опасность. Согласно оценкам ВОЗ летальная разовая доза кадмия составляет от 350 до 3500 мг. Характерная особенность кадмия – долгое время удержания: в течение одних суток из организма человека выводится лишь 0.1% дозы.

Показателен пример с заболеванием «итай-итай», впервые отмеченным в 1940-х годах в Японии. У больных наблюдались сильные боли в мышцах (миалгия), повреждения почек, деформации скелета и переломы костей. В течение 15-30 лет от хронического отравления кадмием погибли около 150 человек. Причиной отравления стало орошение соевых плантаций и рисовых чеков водой из реки Дзингу, в которой содержался кадмий из стоков цинкового рудника. В результате исследований выяснилось, что в организм заболевших кадмий поступал в количестве 600 мкг в сутки. Одни из основных продуктов питания японцев – это рис и морепродукты, а учитывая способность этих продуктов к накоплению кадмия в высоких концентрациях, заболевание получило тяжелый массовый характер.

Для острого пищевого отравления кадмием с водой достаточно разовой дозы в 13-15 мг. В данном случае появляются признаки острого гастроэнтерита: судороги и боли вэпигастральной области, рвота.

Предельно допустимая концентрации кадмия в воде

Согласно российским СанПин 2.1.4.1074-01 предельно допустимая концентрация кадмия составляет 0.001 мг/дм.куб. В странах ЕС эта цифра составляет 0.005 мг/дм.куб.

Методы очистки воды от кадмия

Очистка воды от кадмия считается одной из наиболее сложных процедур. Поэтому к системам очистки предъявляются довольно высокие требования: очистка воды от кадмия, обеззараживание, снижение жесткости, задержка активного хлора, органики и других вредных веществ, повышение органолептических показателей. Чтобы выбрать наиболее эффективный метод очистки для конкретных нужд, необходимо определить источник, уровень содержания примесей и т.д., иными словами произвести детальный анализ воды.

Очистка воды от кадмия при помощи реагентов

Очистка воды от кадмия осуществляется в основном химическим способом. При условии изменения pHкадмий преобразуется в нерастворимую форму, выпадает в осадок и удаляется. Выбор химических реагентов, используемых для очистки воды, зависит от концентрации кадмия, требуемой степени очистки и присутствия примесей.

Когда вещество переведено в нерастворимую форму производится разделение, происходящее вследствие гравитационного осаждения кадмия с помощью осаждающих емкостей. Из этих емкостей осевший кадмий откачивают с целью обезвоживания и просушки. Это достаточно простой метод, поэтому он получил широкое распространение. Однако этот метод не лишен недостатков, главный из которых -высокая степень чувствительности к иным соединениям,которые не позволяют кадмию осаждаться.

Мембранный метод очистки воды от кадмия

Данный метод считается наиболее результативным и заключается в применении специальной установки с перегородками-мембранами. Мембраны отличаются высокой селективностью, то есть способностью разделять вещества. Полупроницаемая перегородка способна пропускать сквозь себя исключительно воду, освобожденную от примесей. Примеси, в свою очередь, скапливаются с другой стороны. Перегородки выполнены из прочного, химически стойкого материала к среде очищаемой жидкости. Одно из главных преимуществ – способность мембраны выполнять свои функции в течение всего срока эксплуатации, сохраняя при этом высокую эффективность.

Фильтры бытового назначения

Большой популярностью пользуются бытовые системы фильтрации воды- отдельные краны для чистой воды, насадки на кран, настольные фильтры на мойку, фильтры кувшинного типа и другие.

Тяжелые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Термин тяжелые металлы, характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах.

В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы. В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: Vа, Сr, Мn, Fе, Со, Ni, Сu, Zn, Мо, Sn, Нg, Рb, Вe и др.

При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации.

Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н. Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см 3 . Таким образом, к тяжелым металлам относятся: Cr, Мn, Fе, Со, Ni, Сu, Zn, Мо, Нg, Рb, Вe.

Формально определению тяжелые металлы соответствует большое количество элементов. Однако, по мнению исследователей, занятых практической деятельностью, связанной с организацией наблюдений за состоянием и загрязнением окружающей среды, соединения этих элементов далеко не равнозначны как загрязняющие вещества.

Поэтому во многих работах происходит сужение рамок группы тяжелых металлов, в соответствии с критериями приоритетности, обусловленными направлением и спецификой работ.

Так, в ставших уже классическими работах Ю. А. Израэля в перечне химических веществ, подлежащих определению в природных средах на фоновых станциях в биосферных заповедниках, в разделе тяжелые металлы поименованы Рb, Нg, Cu.

С другой стороны, согласно решению Целевой группы по выбросам тяжелых металлов, работающей под эгидой Европейской Экономической Комиссии ООН и занимающейся сбором и анализом информации о выбросах загрязняющих веществ в европейских странах, только Zn, Hg и Pb были отнесены к тяжелым металлам.

По определению Н. Реймерса отдельно от тяжелых металлов стоят благородные и редкие металлы, соответственно, остаются только Рb, Сu, Zn, Ni, Со, Sn, Be, Нg.

В прикладных работах к числу тяжелых металлов чаще всего добавляют Pt, Au, Mn.

Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (рН, окислительно-восстановительный потенциал, наличие лигандов) они существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлорганических соединений, которые могут быть истинно растворенными, коллоидно-дисперсными или входить в состав минеральных и органических взвесей.

Истинно растворенные формы металлов, в свою очередь, весьма разнообразны, что связано с процессами гидролиза, гидролитической полимеризации (образованием полиядерных гидроксокомплексов) и комплексообразования с различными лигандами.

Соответственно, как каталитические свойства металлов, так и доступность их для водных микроорганизмов зависят от форм существования их в водной экосистеме.

Многие металлы образуют довольно прочные комплексы с органикой; эти комплексы являются одной из важнейших форм миграции элементов в природных водах.

Большинство органических комплексов образуются по хелатному циклу и являются устойчивыми. Комплексы, образуемые почвенными кислотами с солями железа, алюминия, титана, урана, ванадия, меди, молибдена и других тяжелых металлов, относительно хорошо растворимы в условиях нейтральной, слабокислой и слабощелочной сред. Поэтому металлорганические комплексы способны мигрировать в природных водах на весьма значительные расстояния.

Особенно важно это для маломинерализованных и в первую очередь поверхностных вод, в которых образование других комплексов невозможно.

Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю свободных и связанных форм металла.

Переход металлов в водной среде в металлокомплексную форму имеет три следствия:

1. Может происходить увеличение суммарной концентрации ионов металла за счет перехода его в раствор из донных отложений;

2. Мембранная проницаемость комплексных ионов может существенно отличаться от проницаемости гидратированных ионов;

3. Токсичность металла в результате комплексообразования может сильно измениться.

Так, хелатные формы Сu, Pb и Нg менее токсичны, нежели свободные ионы. Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю связанных и свободных форм.

Источниками загрязнения вод тяжелыми металлами служат сточные воды гальванических цехов, предприятий горнодобывающей, черной и цветной металлургии, машиностроительных заводов. Тяжелые металлы входят в состав удобрений и пестицидов и могут попадать в водоемы вместе со стоком с сельскохозяйственных угодий.

Повышение концентрации тяжелых металлов в природных водах часто связано с другими видами загрязнения, например, с закислением.

Выпадение кислотных осадков способствует снижению значения рН и переходу металлов из сорбированного на минеральных и органических веществах состояния в свободное.

Ванадий

Ванадий находится преимущественно в рассеянном состоянии и обнаруживается в железных рудах, нефти, асфальтах, битумах, горючих сланцах, углях и др. Одним из главных источников загрязнения природных вод ванадием являются нефть и продукты ее переработки.

В природных водах встречается в очень малой концентрации: в воде рек от 0,2 до 4,5 мкг/дм 3 , в морской воде – в среднем 2,0 мкг/дм 3

В миграции ванадия существенна роль растворенных комплексных соединений его с органическими веществами, особенно с гумусовыми кислотами.

Повышенные концентрации ванадия вредны для здоровья человека. ПДК ванадия составляет 0,1 мг/дм 3 (лимитирующий показатель вредности – санитарно-токсикологический) .

Висмут

Естественными источниками поступления висмута в природные воды являются процессы выщелачивания висмутсодержащих минералов. Источником поступления в природные воды могут быть также сточные воды фармацевтических и парфюмерных производств, некоторых предприятий стекольной промышленности.

В незагрязненных поверхностных водах содержится в субмикрограммовых концентрациях. Наиболее высокая концентрация обнаружена в подземных водах и составляет 20 мкг/дм 3 , в морских водах – 0,02 мкг/дм 3 . ПДК составляет 0,1 мг/дм 3 .

Железо

Главными источниками соединений железа в поверхностных водах являются процессы химического выветривания горных пород, сопровождающиеся их механическим разрушением и растворением. В процессе взаимодействия с содержащимися в природных водах минеральными и органическими веществами образуется сложный комплекс соединений железа, находящихся в воде в растворенном, коллоидном и взвешенном состоянии. Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками.

Фазовые равновесия зависят от химического состава вод, рН и в некоторой степени от температуры. В рутинном анализе во взвешенную форму выделяют частицы с размером более 0,45 мк. Она представляет собой преимущественно железосодержащие минералы, гидрат оксида железа и соединения железа, сорбированные на взвесях.

Истинно растворенную и коллоидную форму обычно рассматривают совместно. Растворенное железо представлено соединениями, находящимися в ионной форме, в виде гидроксокомплекса и комплексов с растворенными неорганическими и органическими веществами природных вод.

В ионной форме мигрирует главным образом Fе (II), а Fе (III) в отсутствие комплексообразующих веществ не может в значительных количествах находиться в растворенном состоянии.

В результате химического и биохимического (при участии железобактерий) окисления Fе (II) переходит в Fе (III), который, гидролизуясь, выпадает в осадок в виде Fе (ОН) 3 .

Как для Fе(II), так и для Fе (III) характерна склонность к образованию гидроксокомплексов типа + , 4+ , + , 3+ , и других, сосуществующих в растворе в разных концентрациях в зависимости от рН и в целом определяющих состояние системы железо-гидроксил.

Основной формой нахождения Fe (III) в поверхностных водах являются комплексные соединения его с растворенными неорганическими и органическими соединениями, главным образом гумусовыми веществами.

При рН = 8,0 основной формой является Fе(ОН) 3 .Коллоидная форма железа наименее изучена, она представляет собой гидрат оксида железа Fе(ОН) 3 и комплексы с органическими веществами.

Наибольшие концентрации железа (до нескольких десятков и сотен миллиграммов в 1 дм 3) наблюдаются в подземных водах с низкими значениями рН.

Являясь биологически активным элементом, железо в определенной степени влияет на интенсивность развития фитопланктона и качественный состав микрофлоры в водоеме.

Концентрация железа подвержена заметным сезонным колебаниям. Обычно в водоемах с высокой биологической продуктивностью в период летней и зимней стагнации заметно увеличение концентрации железа в придонных слоях воды. Осенне-весеннее перемешивание водных масс (гомотермия) сопровождается окислением Fе (II) в Fе (III) и выпадением последнего в виде Fе(ОН) 3 .

ПДК железа составляет 0,3 мг/дм 3

Кадмий

В природные воды поступает при выщелачивании почв, полиметаллических и медных руд, в результате разложения водных организмов, способных его накапливать.

Соединения кадмия выносятся в поверхностные воды со сточными водами свинцово-цинковых заводов, рудообогатительных фабрик, ряда химических предприятий (производство серной кислоты), гальванического производства, а также с шахтными водами.

Понижение концентрации растворенных соединений кадмия происходит за счет процессов сорбции, выпадения в осадок гидроксида и карбоната кадмия и потребления их водными организмами.

Растворенные формы кадмия в природных водах представляют собой главным образом минеральные и органо-минеральные комплексы. Основной взвешенной формой кадмия являются его сорбированные соединения. Значительная часть кадмия может мигрировать в составе клеток гидробионтов.

В речных незагрязненных и слабозагрязненных водах кадмий содержится в субмикрограммовых концентрациях, в загрязненных и сточных водах концентрация кадмия может достигать десятков микрограммов в 1 дм 3 .

Соединения кадмия играют важную роль в процессе жизнедеятельности животных и человека. В повышенных концентрациях токсичен, особенно в сочетании с другими токсичными веществами.

ПДК составляет 0,001 мг/дм 3 . Лимитирующий признак вредности – токсикологический.

Кобальт

В природные воды соединения кобальта попадают в результате процессов выщелачивания их из медноколчедановых и других руд, из почв при разложении организмов и растений, а также со сточными водами металлургических, металлообрабатывающих и химических заводов. Некоторые количества кобальта поступают из почв в результате разложения растительных и животных организмов.

Соединения кобальта в природных водах находятся в растворенном и взвешенном состоянии, количественное соотношение между которыми определяется химическим составом воды, температурой и значениями рН.

Растворенные формы представлены в основном комплексными соединениями, в том числе с органическими веществами природных вод. Соединения двухвалентного кобальта наиболее характерны для поверхностных вод. В присутствии окислителей возможно существование в заметных концентрациях трехвалентного кобальта.

Кобальт относится к числу биологически активных элементов и всегда содержится в организме животных и в растениях. С недостаточным содержанием его в почвах связано недостаточное содержание кобальта в растениях, что способствует развитию малокровия у животных (таежно-лесная нечерноземная зона).

Входя в состав витамина В 12 , кобальт весьма активно влияет на поступление азотистых веществ, увеличение содержания хлорофилла и аскорбиновой кислоты, активизирует биосинтез и повышает содержание белкового азота в растениях. Вместе с тем повышенные концентрации соединений кобальта являются токсичными.

В речных незагрязненных и слабозагрязненных водах его содержание колеблется от десятых до тысячных долей миллиграмма в 1 дм 3 , среднее содержание в морской воде 0,5 мкг/дм 3 .

ПДК составляет 0,1 мг/дм 3 .

Марганец

В поверхностные воды марганец поступает в результате выщелачивания железомарганцевых руд и других минералов, содержащих марганец (пиролюзит, псиломелан, браунит, манганит, черная охра). Значительные количества марганца поступают в процессе разложения водных животных и растительных организмов, особенно сине-зеленых, диатомовых водорослей и высших водных растений. Соединения марганца выносятся в водоемы со сточными водами марганцевых обогатительных фабрик, металлургических заводов, предприятий химической промышленности и с шахтными водами.

Понижение концентрации ионов марганца в природных водах происходит в результате окисления Mn (II) до МnО 3 и других высоковалентных оксидов, выпадающих в осадок. Основные параметры, определяющие реакцию окисления, – концентрация растворенного кислорода, величина рН и температура. Концентрация растворенных соединений марганца понижается вследствие утилизации их водорослями.

Главная форма миграции соединений марганца в поверхностных водах – взвеси, состав которых определяется в свою очередь составом пород, дренируемых водами, а также коллоидные гидроксиды тяжелых металлов и сорбированные соединения марганца.

Существенное значение в миграции марганца в растворенной и коллоидной формах имеют органические вещества и процессы комплексообразования марганца с неорганическими и органическими лигандами.

Mn (II) образует растворимые комплексы с бикарбонатами и сульфатами. Комплексы марганца с ионом хлора встречаются редко.

Комплексные соединения Mn (II) с органическими веществами обычно менее прочны, чем с другими переходными металлами. К ним относятся соединения с аминами, органическими кислотами, аминокислотами и гумусовыми веществами.

Mn (III) в повышенных концентрациях может находиться в растворенном состоянии только в присутствии сильных комплексообразователей.

Mn (VI) в природных водах не встречается.

В речных водах содержание марганца колеблется обычно от 1 до 160 мкг/дм 3 , среднее содержание в морских водах составляет 2 мкг/дм 3 .

Концентрация марганца в поверхностных водах подвержена сезонным колебаниям.

Факторами, определяющими изменения концентраций марганца, являются соотношение между поверхностным и подземным стоком, интенсивность потребления его при фотосинтезе, разложение фитопланктона, микроорганизмов и высшей водной растительности, а также процессы осаждения его на дно водных объектов.

Роль марганца в жизни высших растений и водорослей водоемов весьма велика. Марганец способствует утилизации СО 2 растениями, чем повышает интенсивность фотосинтеза, участвует в процессах восстановления нитратов и ассимиляции азота растениями. Марганец способствует переходу активного Fе (II) в Fе (Ш), что предохраняет клетку от отравления, ускоряет рост организмов и т.д. Важная экологическая и физиологическая роль марганца вызывает необходимость изучения и распределения марганца в природных водах.

Для водоемов санитарно-бытового использования установлена ПДК по иону марганца, равная 0,1 мг/дм 3 .

Медь

Медь – один из важнейших микроэлементов. Физиологическая активность меди связана главным образом с включением ее в состав активных центров окислительно-восстановительных ферментов. Недостаточное содержание меди в почвах отрицательно влияет на синтез белков, жиров и витаминов и способствует бесплодию растительных организмов.

Медь участвует в процессе фотосинтеза и влияет на усвоение азота растениями. Вместе с тем, избыточные концентрации меди оказывают неблагоприятное воздействие на растительные и животные организмы.

В природных водах наиболее часто встречаются соединения Сu (II).

Из соединений Сu (I) наиболее распространены трудно растворимые в воде Сu 2 О, Сu 2 S, СuСl. При наличии в водной среде лигандов наряду с равновесием диссоциации гидроксида необходимо учитывать образование различных комплексных форм, находящихся в равновесии с акваионами металла.

Основным источником поступления меди в природные воды являются сточные воды предприятий химической, металлургической промышленности, шахтные воды, альдегидные реагенты, используемые для уничтожения водорослей. Медь может появляться в результате коррозии медных трубопроводов и других сооружений, используемых в системах водоснабжения. В подземных водах содержание меди обусловлено взаимодействием воды с горными породами, содержащими ее (халькопирит, халькозин, ковеллин, борнит, малахит, азурит, хризаколла, бротантин).

Предельно допустимая концентрация меди в воде водоемов санитарно-бытового водопользования составляет 0,1 мг/дм 3 (лимитирующий признак вредности – общесанитарный).

Молибден

Соединения молибдена попадают в поверхностные воды в результате выщелачивания их из экзогенных минералов, содержащих молибден. Молибден попадает в водоемы также со сточными водами обогатительных фабрик, предприятий цветной металлургии. Понижение концентраций соединений молибдена происходит в результате выпадения в осадок трудно растворимых соединений, процессов адсорбции минеральными взвесями и потребления растительными водными организмами.

Молибден в поверхностных водах находится в основном в форме МоО 4 -2 .Весьма вероятно существование его в виде органоминеральных комплексов. Возможность некоторого накопления в коллоидном состоянии вытекает из того факта, что продукты окисления молибденита представляют рыхлые тонкодисперсные вещества.

В речных водах молибден обнаружен в концентрациях от 2,1 до 10,6 мкг/дм 3 . В морской воде содержится в среднем 10 мкг/дм 3 молибдена.

В малых количествах молибден необходим для нормального развития растительных и животных организмов. Молибден входит в состав фермента ксантиноксидазы. При дефиците молибдена фермент образуется в недостаточном количестве, что вызывает отрицательные реакции организма. В повышенных концентрациях молибден вреден. При избытке молибдена нарушается обмен веществ.

Предельно допустимая концентрация молибдена в водоемах санитарно-бытового использования составляет 0,25 мг/дм 3 .

Мышьяк

В природные воды мышьяк поступает из минеральных источников, районов мышьяковистого оруднения (мышьяковый колчедан, реальгар, аурипигмент), а также из зон окисления пород полиметаллического, медно-кобальтового и вольфрамового типов. Некоторое количество мышьяка поступает из почв, а также в результате разложения растительных и животных организмов. Потребление мышьяка водными организмами является одной из причин понижения концентрации его в воде, наиболее отчетливо проявляющегося в период интенсивного развития планктона.

Значительные количества мышьяка поступают в водные объекты со сточными водами обогатительных фабрик, отходами производства красителей, кожевенных заводов и предприятий, производящих пестициды, а также с сельскохозяйственных угодий, на которых применяются пестициды.

В природных водах соединения мышьяка находятся в растворенном и взвешенном состоянии, соотношение между которыми определяется химическим составом воды и значениями рН. В растворенной форме мышьяк встречается в трех- и пятивалентной форме, главным образом в виде анионов.

В речных незагрязненных водах мышьяк находится обычно в микрограммовых концентрациях. В минеральных водах его концентрация может достигать нескольких миллиграммов в 1 дм 3 , в морских водах в среднем содержится 3 мкг/дм 3 .

Соединения мышьяка в повышенных концентрациях являются токсичными для организма животных и человека: они тормозят окислительные процессы, угнетают снабжение кислородом органов и тканей.

ПДК мышьяка составляет 0,05 мг/дм 3 (лимитирующий показатель вредности - санитарно-токсикологический)

Никель

Присутствие никеля в природных водах обусловлено составом пород, через которые проходит вода. Он обнаруживается в местах месторождений сульфидных медно-никелевых руд и железо-никелевых руд. В воду попадает из почв и из растительных и животных организмов при их распаде.

Повышенное по сравнению с другими типами водорослей содержание никеля обнаружено в сине-зеленых водорослях. Соединения никеля в водные объекты поступают также со сточными водами цехов никелирования, заводов синтетического каучука, никелевых обогатительных фабрик. Огромные выбросы никеля сопровождают сжигание ископаемого топлива.

Концентрация его может понижаться в результате выпадения в осадок таких соединений, как цианиды, сульфиды, карбонаты или гидроксиды (при повышении значений рН), за счет потребления его водными организмами и процессов адсорбции.

В поверхностных водах соединения никеля находятся в растворенном, взвешенном и коллоидном состоянии, количественное соотношение между которыми зависит от состава воды, температуры и значений рН. Сорбентами соединений никеля могут быть гидроксид железа, органические вещества, высокодисперсный карбонат кальция, глины. Растворенные формы представляют собой главным образом комплексные ионы, наиболее часто с аминокислотами, гуминовыми и фульвокислотами, а также в виде прочного цианидного комплекса. Наиболее распространены в природных водах соединения никеля, в которых он находится в степени окисления +2. Соединения Ni 3+ образуются обычно в щелочной среде.

Соединения никеля играют важную роль в кроветворных процессах, являясь катализаторами. Повышенное его содержание оказывает специфическое действие на сердечно-сосудистую систему. Никель принадлежит к числу канцерогенных элементов. Он способен вызывать респираторные заболевания. Считается, что свободные ионы никеля (Ni 2+) примерно в 2 раза более токсичны, чем его комплексные соединения.

В речных незагрязненных и слабозагрязненных водах концентрация никеля колеблется обычно от 0,8 до 10 мкг/дм 3 ; в загрязненных она составляет несколько десятков микрограммов в 1 дм 3 . Средняя концентрация никеля в морской воде 2 мкг/дм 3 .

Олово

В природные воды поступает в результате процессов выщелачивания оловосодержащих минералов (касситерит, станнин), а также со сточными водами различных производств (крашение тканей, синтез органических красок, производство сплавов с добавкой олова и др.).

Токсическое действие олова невелико.

В незагрязненных поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограммов в 1 дм 3 . ПДК составляет 2 мг/дм 3 .

Ртуть

В поверхностные воды соединения ртути могут поступать в результате выщелачивания пород в районе ртутных месторождений (киноварь, метациннабарит, ливингстонит), в процессе разложения водных организмов, накапливающих ртуть.

Значительные количества поступают в водные объекты со сточными водами предприятий, производящих красители, пестициды, фармацевтические препараты, некоторые взрывчатые вещества. Тепловые электростанции, работающие на угле, выбрасывают в атмосферу значительные количества соединений ртути, которые в результате мокрых и сухих выпадений попадают в водные объекты.

Понижение концентрации растворенных соединений ртути происходит в результате извлечения их многими морскими и пресноводными организмами, обладающими способностью накапливать ее в концентрациях, во много раз превышающих содержание ее в воде, а также процессов адсорбции взвешенными веществами и донными отложениями.

В поверхностных водах соединения ртути находятся в растворенном и взвешенном состоянии. Соотношение между ними зависит от химического состава воды и значений рН. Взвешенная ртуть представляет собой сорбированные соединения ртути. Растворенными формами являются недиссоциированные молекулы, комплексные органические и минеральные соединения. В воде водных объектов ртуть может находиться в виде метилртутных соединений.

Соединения ртути высоко токсичны, они поражают нервную систему человека, вызывают изменения со стороны слизистой оболочки, нарушение двигательной функции и секреции желудочно-кишечного тракта, изменения в крови и др. Бактериальные процессы метилирования направлены на образование метилртутных соединений, которые во много раз токсичнее минеральных солей ртути. Метилртутные соединения накапливаются в рыбе и могут попадать в организм человека.

ПДК ртути составляет 0,0005 мг/дм 3 (лимитирующий признак вредности санитарно-токсикологический).

Свинец

Естественными источниками поступления свинца в поверхностные воды являются процессы растворения эндогенных (галенит) и экзогенных (англезит, церуссит и др.) минералов.

Значительное повышение содержания свинца в окружающей среде (в т.ч. и в поверхностных водах) связано со сжиганием углей, применением тетраэтилсвинца в качестве антидетонатора в моторном топливе, с выносом в водные объекты со сточными водами рудообогатительных фабрик, некоторых металлургических заводов, химических производств, шахт и т.д.

Существенными факторами понижения концентрации свинца в воде является адсорбция его взвешенными веществами и осаждение с ними в донные отложения. В числе других металлов свинец извлекается и накапливается гидробионтами.

Свинец находится в природных водах в растворенном и взвешенном (сорбированном) состоянии. В растворенной форме встречается в виде минеральных и органоминеральных комплексов, а также простых ионов, в нерастворимой – главным образом в виде сульфидов, сульфатов и карбонатов.

В речных водах концентрация свинца колеблется от десятых долей до единиц микрограммов в 1 дм 3 . Даже в воде водных объектов, прилегающих к районам полиметаллических руд, концентрация его редко достигает десятков миллиграммов в 1 дм 3 . Лишь в хлоридных термальных водах концентрация свинца иногда достигает нескольких миллиграммов в 1 дм 3 .

Свинец - промышленный яд, способный при неблагоприятных условиях оказаться причиной отравления. В организм человека проникает главным образом через органы дыхания и пищеварения. Удаляется из организма очень медленно, вследствие чего накапливается в костях, печени и почках.

Лимитирующий показатель вредности свинца – санитарно-токсикологический. ПДК, свинца составляет 0,03 мг/дм 3 .

Тетраэтилсвинец

Поступает в природные воды в связи с использованием в качестве антидетонатора в моторном топливе водных транспортных средств, а также с поверхностным стоком с городских территорий.

Данное вещество характеризуется высокой токсичностью, обладает кумулятивными свойствами.

Серебро

Источниками поступления серебра в поверхностные воды служат подземные воды и сточные воды рудников, обогатительных фабрик, фотопредприятий. Повышенное содержание серебра бывает связано с применением бактерицидных и альгицидных препаратов.

В сточных водах серебро может присутствовать в растворенном и взвешенном виде, большей частью в форме галоидных солей.

В незагрязненных поверхностных водах серебро находится в субмикрограммовых концентрациях. В подземных водах концентрация серебра колеблется от единиц до десятков микрограммов в 1 дм 3 , в морской воде – в среднем 0,3 мкг/дм 3 .

Ионы серебра способны уничтожать бактерии и уже в незначительной концентрации стерилизуют воду (нижний предел бактерицидного действия ионов серебра 210 моль/дм 3). Роль серебра в организме животных и человека изучена недостаточно.

ПДК серебра составляет 0,05 мг/дм 3 .

Сурьма

Сурьма поступает в поверхностные воды за счет выщелачивания минералов сурьмы (стибнит, сенармонтит, валентинит, сервантит, стибиоканит) и со сточными водами резиновых, стекольных, красильных, спичечных предприятий.

В природных водах соединения сурьмы находятся в растворенном и взвешенном состоянии. В окислительно-восстановительных условиях, характерных для поверхностных вод, возможно существование как трехвалентной, так и пятивалентной сурьмы.

В незагрязненных поверхностных водах сурьма находится в субмикрограммовых концентрациях, в морской воде ее концентрация достигает 0,5 мкг/дм 3 , в подземных водах – 10,0 мкг/дм 3 .

ПДК сурьмы составляет 0,05 мг/дм 3 (лимитирующий показатель вредности – санитарно-токсикологический ).

Хром

В поверхностные воды соединения трех- и шестивалентного хрома попадают в результате выщелачивания из пород (хромит, крокоит, уваровит и др.). Некоторые количества поступают в процессе разложения организмов и растений, из почв.

Значительные количества могут поступать в водоемы со сточными водами гальванических цехов, красильных цехов текстильных предприятий, кожевенных заводов и предприятий химической промышленности. Понижение концентрации ионов хрома может наблюдаться в результате потребления их водными организмами и процессов адсорбции.

В поверхностных водах соединения хрома находятся в растворенном и взвешенном состояниях, соотношение между которыми зависит от состава вод, температуры, рН раствора. Взвешенные соединения хрома представляют собой в основном сорбированные соединения хрома.

Сорбентами могут быть глины, гидроксид железа, высокодисперсный оседающий карбонат кальция, остатки растительных и животных организмов. В растворенной форме хром может находиться в виде хроматов и бихроматов. При аэробных условиях Cr (VI) переходит в Cr (III), соли которого в нейтральной и щелочной средах гидролизуется с выделением гидроксида.

В речных незагрязненных и слабозагрязненных водах содержание хрома колеблется от нескольких десятых долей микрограмма в литре до нескольких микрограммов в литре, в загрязненных водоемах оно достигает нескольких десятков и сотен микрограммов в литре. Средняя концентрация в морских водах – 0,05 мкг/дм 3 .

Соединения Cr (VI) и Cr (III) в повышенных количествах обладают канцерогенными свойствами. Соединения Cr (VI) являются более опасными.

Цинк

Попадает в природные воды в результате протекающих в природе процессов разрушения и растворения горных пород и минералов (сфалерит, цинкит, смитсонит, каламин), а также со сточными водами рудообогатительных фабрик и гальванических цехов, производств пергаментной бумаги, минеральных красок, вискозного волокна и др.

В воде существует главным образом в ионной форме или в форме его минеральных и органических комплексов. Иногда встречается в нерастворимых формах: в виде гидроксида, карбоната, сульфида и др.

В речных водах концентрация цинка обычно колеблется от 3 до 120 мкг/дм 3 , в морских – от 1,5 до 10,0 мкг/дм3. Содержание в рудных и особенно в шахтных водах с низкими значениями рН может быть значительным.

Цинк относится к числу активных микроэлементов, влияющих на рост и нормальное развитие организмов. В то же время многие соединения цинка токсичны, прежде всего, его сульфат и хлорид.

ПДК составляет 1 мг/дм 3 (лимитирующий показатель вредности – органолептический).


Современный уровень развития промышленных технологий не позволяет перейти к экологически чистому производству.Одним из наиболее распространенных загрязнителей окружающей среды являются ионы тяжелых металлов, в частности кадмий. Индустриальное загрязнение кадмием характерно для многих промышленных районов России. Кадмий способен адсорбироваться на твердых частицах и переноситься на большие расстояния.

Источниками большинства антропогенных загрязнений являются отходы от металлургических производств, со сточными водами гальванических производств (после кадмирования), других производств, в которых применяются кадмийсодержащие стабилизаторы, пигменты, краски и в результате использования фосфатных удобрений. Кадмий присутствует в воздухе крупных городов вследствие истирания шин, эрозии некоторых видов пластмассовых изделий, красок и клеящих материалов. Однако больше всего в окружающую среду кадмий поступает в виде побочного продукта металлургического производства (например, при выплавке и электролитической очистке цинка), а также при хранении и переработке бытовых и промышленных отходов. Даже в незагрязненных районах с содержанием кадмия в воздухе менее 1 мкг/м, его ежедневное поступление в организм человека при дыхании составляет около 1% от допустимой суточной дозы.

Дополнительным источником поступления кадмия в организм является курение. Одна сигарета содержит 1-2 мкг кадмия, и около 10% его поступает в органы дыхания. У лиц выкуривающих до 30 сигарет в день, за 40 лет в организме накапливается 13-52 мкг кадмия, что превышает его количество, поступающее с пищей.

В питьевую воду кадмий попадает вследствие загрязнения водоисточников производственными сбросами, с реагентами, используемыми на стадии водоподготовки, а также в результате миграции из водопроводных конструкций. Доля кадмия, поступающего в организм с водой, в общей суточной дозе составляет 5-10%. Среднесуточное потребление кадмия человеком составляет примерно 50 мкг с отдельными отклонениями в зависимости от индивидуальных и региональных особенностей. Предельно допустимая концентрация (ПДК) кадмия в атмосферном воздухе составляет 0,3 мкг/м, в воде водоисточников – 0,001мг/л, в почвах песчаных и супесчаных кислых и нейтральных 0,5, 1,0 и 2,0 мг/ кг соответственно.

Всемирной организацией здравоохранения (ВОЗ) установлен допустимый уровень содержания кадмия в организме 6,7- 8 мкг/кг. Обмен кадмия в организме характеризуется следующими основными особенностями: отсутствием эффективного механизма гомеостатического контроля; длительным удержанием (кумуляцией) в организме. На задержку кадмия в организме оказывает влияние возраст человека. У детей и подростков степень его всасывания в 5 раз выше, чем у взрослых. Выведение кадмия происходит медленно. Период его биологической полужизни в организме колеблется, по разным оценкам, в пределах 10-47 лет. От 50 до 75% кадмия от попавшего количества удерживается в организме. Основное количество кадмия из организма выводится с мочой (1-2 мкг /сут) и калом(10-50 мкг/сут).

Хроническое воздействие кадмия на человека приводит к нарушениям почечной функций легочной недостаточной, остёомаляций, анемий и потери обоняния. Существует данные о возможном канцерогенном эффекте кадмия и о вероятном участии его в развитии сердечно-сосудистых заболеваний. Наиболее тяжелой формой хронического отравления кадмием является болезнь “итай-итай” характеризующаяся деформацией скелета с заметным уменьшением роста, поясничными болями, болезненным явлениями в мышцах ног, утиной походкой. Кроме того, отмечаются частные переломы размягчённых костей, а также нарушение функций поджелудочной железы, изменения в желудочно-кишечном тракте, гипохромная анемия, дисфункция почек и др. Кадмий способен накапливаться в организме человека и животных, так как сравнительно легко усваивается из пищи и воды и проникает в различные органы и ткани. Токсическое действие металла проявляется уже при очень низких концентрациях. В современной научной литературе изучению токсического действия кадмия посвящено немало работ. Наиболее типичным проявлением отравления кадмием является нарушение процессов поглощения аминокислот, фосфора и кальция в почках. После прекращения действия кадмия повреждения, вызванные его действием в почках, остаются необратимыми. Показано, что нарушение процессов обмена в почках может привести к изменению минерального состава костей. Известно, что кадмий накапливается преимущественно в корковом слое почек, а его концентрация в мозговом слое и почечных лоханках значительно ниже, что связано с его способностью депонироваться в паренхиматозных органах и медленным выведением из организма.

Предположительно проявление токсического действия ионов кадмия связано синтезом в организме белка металиотеонеина, который связывает и транспортирует его в почки. Там белок почти полностью реадсорбируется и быстро деградирует с освобождением ионов кадмия, стимулирующих металлиотионеина в клетках эпителия проксимальных канальцев. Деградация комплекса кадмий-металлиотионеин приводит к повышению уровня ионов кадмия вначале в лизосомальной фракций, а затем в цитозоле, где происходит связывание с почечным металлиотионеином. При этом в клетках появляются везикулы, и повышается число электронно-плотных лизосом, появлением низкомолекулярной протеинурии и кальцийурией.

Роль белка металиотинеина в снижении токсичности кадмия весьма значительна. Экспериментальное внутривенное введение кадмия, связанного с данным белком, предотвращает развитие некроза в почечной ткани у мышей, тогда как аналогичные дозы неорганического кадмия вызывает развитие некроза в почках. Это доказывает участие металиотионеина в снижении токсичности металла. Однако этот механизм ограничен в количественном отношении, потому что при длительном поступлении кадмия также развивается повреждение тубулярного эпителия.

Многочисленными исследованиями была показана возможная связь между кадмийиндуцированным повреждением клеток почек, межклеточным изменением содержания ионов кадмия и индукцией синтеза стрессовых белков. Первым кандидатом на роль стрессового белка является кальмодулин, так как in vitro показано, что кадмий активирует секрецию этого гормона, который через усиление потока кальция в клетку может повреждать цитоскелет.

Кадмий вызывает развитие протеинурии, глюкозурии, аминоацидурии и другие патологические процессы. При длительном поступлении кадмия в организм развивается почечный тубулярный ацидоз, гиперкальцийурия и формируются камни в мочевом пузыре. В тяжелых случаях хронической кадмиевой интоксикации может также наблюдаться нефрокальцидоз. Накопление кадмия в клетках культуры почек происходит параллельно повышению степени его токсичности. Однако характер распределения его в клетке не зависит от выраженности цитотоксического действия: более 90% металла связано с цитозолем, остальная часть – микросомной, митохондриальной, ядерной фракциями и клеточными фрагментами.

Изучение субклеточного распределения кадмия в печени позволило расшифровать механизм возникновения толерантности к данному металлу. Установлено, что снижение чувствительности к кадмию обусловлено изменением его распределения не в тканях, а цитозольной субклеточной фракции печени, являющиеся органом – мишенью, где происходит связывание его с металиотионеином. В дозе 2,4 мг/кг кадмий снижает синтез белка в микросомальной фракции печени крыс, не нарушая его в ядрах и митохондриях. Накапливаясь на внутренних мембранах митохондрий, данный металл уменьшает энергоснабжение и стимулирует перекисное окисление липидов (ПОЛ) при концентрациях 10 – 100 мкмоль.

В первые сутки после введения кадмия в дозе 4 мг/кг в мышце сердца крыс по сравнению с контролем увеличились содержание диеновых коньюгантов в 2,1 раз, активность глутатионпероксидазы – на 3,2%. В коре больших полушарий головного мозга содержание шиффовых оснований возрастало в 2,2 раза. На седьмые сутки наблюдения у животных, получавших кадмий, концентрация шиффовых оснований в неокортексе оставалась повышенной на 59,3%, в сердце – увеличилось в 2,4 раза по сравнению с контролем; содержание коньюгантов в миокарде в дозе 1 мкмоль происходит нарушение целостности мембран митохондрий, но стимуляция ПОЛ не наблюдается.

При хроническом ингаляционном воздействии кадмий вызывает тяжелые поражения легких. Как показали проведенные Шоповой В. Л. с сотрудниками исследования, процент альвеолярных макрофагов (АМ) при воздействии кадмия в первый день значительно понижался (до 11,5%). Этот эффект наблюдался и на пятнадцатый день – АМ составил 45,5% от исходных значений. Одновременно резко повышался процент полиморфонуклеарных лейкоцитов (ПНЛ), среди некоторых встречались и незрелые формы. Средняя площадь АМ после химического воздействия увеличивалась за счет повышения процента очень крупных клеток, а не за счет равномерного увеличения площади всех клеток. При этом крупные АМ имели вакуолизированную пенистую цитоплазму. Встречались и клетки с пикнотическими ядрами, кариолизисом и кариорексисом. Все это указывает на то, что соединения кадмия существенно понижают содержание внутриклеточного АТФ и ингибируют клеточное дыхание.

В основе механизма токсического действия ионов тяжелых металлов, в том числе кадмия, лежит их взаимодействие с компонентами клеток, молекулами клеточных органелл и мембран.

Ионы металлов могут влиять на процессы, протекающие в клетке, только проникая внутрь ее и фиксируясь в субклеточных мембранах. Кадмий проникает в клетку через потенциал зависимые кальциевые канальцы. Воздействие кадмия на внутриклеточные процессы весьма разнообразны. Так, металл оказывает заметное влияние на обмен нуклеиновых кислот и белка. Он ингибирует in vivo включение тимидина в ДНК регенерирующей печени, угнетает синтез белка в печени крыс на стадии инициации трансляции, нарушая образования полирибосом, тогда как процесс элонгации, напротив, ускоряется в результате активирования факторов EF – 1 и EF – 2. Избыток ионов кадмия ингибирует синтез ДНК, белков и нуклеиновых кислот, влияет на активность ферментов, нарушает усвоение и обмен ряда микроэлементов (Zn, Cu, Se, Fe), что может вызывать их дефицит. Следует заметить, что при достаточном поступлении цинка в организм токсичность кадмия снижается.

С помощью электронной микроскопии было установлено, что кадмий вызывает ультраструктурные изменения клеточных мембран, митохондрий, цистерн аппарата Гольджи, сети трубочек, хроматина, ядрышка, микрофиламентов и рибосом.

Поражение клеточной оболочки является наиболее ранним признаком действия данного металла, особенно при длительном поступлении, хотя клетки могли переносить поражения клеточной оболочки, а также митохондрий и в некоторой степени – аппарата Гольджи.

При исследовании воздействия кадмия in vitro на митохондриальную мембрану выявили, что ионы кадмия повышают проницаемость мембраны к ионам H, K, Mg, а это приводит к активации дыхания энергизованных нефосфорилирующих митохондрий.

Известно, что некоторые ферменты в своей структуре имеют ионы металлов. Существует группа ферментов, в состав простетической части которых входят ионы металлов IV периода таблицы химических элементов, которые способны замещаться на любой двухвалентный ион металла (близкий по положению в таблице Д. И. Менделеева), в частности, к таким ферментам относятся щелочная фосфатаза и ряд протеаз. На основании проведенных экспериментов можно предположить, что в результате замещения ионов в простетической части фермента один на другой происходит изменение пространственной конфигурации активного центра фермента, что приводит к изменению уровня его активности.

Свое токсическое влияние кадмий оказывает и на репродуктивные функции организма. Эффект зависит от дозы вещества и времени воздействия. Основываясь на экспериментальных данных, полагают, что тератогенное действие кадмийсодержащих веществ может быть связано с ингибированием активности карбоангидразы. Так, воздействуя на ткани семенников, кадмий вызывает уменьшение синтеза тестостерона. Данный металл может приводить к гормональным нарушениям у самок, предотвращает оплодотворение, может вызывать кровотечения и даже приводить к смерти эмбрионов. Установлено также, что кадмий способен накапливаться в плаценте и вызывать ее повреждение. В исследованиях было выяснено влияние различных доз кадмия на эмбриональную смертность. Так, при введении металла в дозе 5 мг/кг впервые обнаруживаются мертвые эмбрионы, при 10 мг/кг наблюдается снижение средней массы плода, увеличение эмбриональной смертности в 2,8 раза, а при дозе 20 мг/кг – максимальное число мертвых эмбрионов на одно животное.

В литературе описано также отдаленное воздействие кадмия на развитие потомства. В частности, в результате введения самкам раствора кадмия во время беременности и в период лактации, у потомства, подвергавшегося действию металла в эмбриогенезе, наблюдались нейрохимические изменения в мозжечке и в полосатом теле, и изменения моторной активности во взрослом состоянии.

Таким образом, основываясь на литературных данных, можно отметить, что токсичность соединений кадмия следует рассматривать двояко. С одной стороны – это непосредственное действие ионов на организм. С другой стороны – влияние на потомство особей, подвергшихся действию соединений этого тяжелого металла.