Основы акустических расчетов. Акустический расчет Акустические расчеты

Акустический дизайн (расчет) - вид проектных работ, выполняемый методом компьютерного моделирования. Результатом являются рекомендации по отделке объекта специальными материалами для приведения акустических параметров к оптимальным, в соответствии с назначением объекта. Эти рекомендации включают в себя типы и площади необходимых отделочных материалов, дверей, штор, а также способы их крепления и расположения в пространстве помещения. Проектирование на раннем этапе строительства объекта позволяет с высокой точностью добиться желаемого результата и в конечном итоге экономит средства заказчика.

В случае расчетов для театров, концертных залов, кинотеатров, студий звукозаписи рекомендации могут касаться архитектурных изменений (форма стен, потолка). Также в зрительных залах учитывается влияние материалов кресел для зрителей.

Для расчета необходимых материалов применяется расширенная эмуляция акустической среды на основе математической трехмерной модели объекта. Для выполнения моделирования необходимо предоставить данные:

  1. Предназначение помещений (типы проводимых работ или мероприятий, желательно с указанием музыкальных жанров для концертных залов и студий).
  2. Все характерные планы, разрезы, материалы стен и полов с учетом финишных покрытий (ковролин по дереву, линолеум по бетону, обои на штукатурке и т.д.), а также инженерные конструкции (короба вентиляции над подвесным потолком, ниши батарей отопления и т.д.), так же необходимо точное положение окон и состав пакетов.
  3. Если есть предварительный дизайн помещения, то необходимо согласование применяемых в отделке звукопоглощающих материалов.
  4. Если объект сложной формы или чрезвычайно критичен к требуемой акустической обстановке (студии звукозаписи, комнаты прослушивания и т.п.), то проводятся замеры параметров текущей среды на объекте до того как приступить к расчетам.

В итоге заказчик получает описание модели объекта с расчетами его основных акустических характеристик:

  • C50 - Индекс речевой ясности;
  • C80 - Индекс музыкальной ясности;
  • STI - Коэффициент речевой разборчивости (индекса передачи речи);
  • EDT - Время затухания ранних отражений;
  • RT - Время реверберации;
  • D50 - Индекс четкости звука;
  • G - Сила звука;
  • моделирование отражений;
  • и прочие

В случае концертного зала, кинотеатра и подобных помещений, в которых установлена профессиональная система звукоусиления, расчет делается с учетом воздействия этой системы и рассчитывается оптимальное положение и углы поворота громкоговорителей по отношению к слушателям. Так же акустический расчет включает в себя спецификацию рекомендуемых к применению звукопоглощающих материалов с рекомендациями по их размещению и способу крепления для каждой поверхности отдельно (стены, пол, потолок).

При необходимости, после монтажа проводится измерение параметров среды и особенностей распространения и поглощения звука, с целью подтверждения правильности монтажа и расположения запроектированных материалов, а также подтверждения результатов математического моделирования.

Некомфортная акустическая обстановка быстро вызывает утомление, раздражение и невосприимчивость информации.

Акустический дизайн применим ко всем помещениям, в которых важно качество звука, комфортное и верное восприятие звуковой информации - от домашних кинотеатров и ресторанов, до клубов и конференц-залов. И обязательно применяется при проектировании концертных площадок, филармоний, театров, кинотеатров, стадионов, храмов.

В общем, для всех заведений, для которых важно, чтобы их посетители чувствовали себя комфортно, а музыка и речь звучащая внутри не вызывала желания побыстрее уйти. Для домашних кинотеатров акустический дизайн дает возможность получить звучание системы ничуть не хуже большого кинотеатра.

Неграмотное размещение акустических материалов из-за отсутствия проекта или их отсутствие вообще, как правило, приводит к тому, что акустическая обстановка в помещении не позволит адекватно воспринимать звуковую информацию. Чаще всего отсутствие такого проектирования приводит к увеличению общей стоимости работ. Так как выясняется, что эксплуатировать объект с таким распространением звуковых волн невозможно, и все равно приходится выполнять необходимые расчеты и дорабатывать интерьер для приведения объекта к приемлемым параметрам. Только уже в экстренном порядке, потому что срок сдачи близко или прошел.

Для того что бы заказать услугу или получить подробную консультацию, обращайтесь к нам по телефонам.

Описание:

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Акустический расчет как основа для проектирования малошумной системы вентиляции (кондиционирования)

В. П. Гусев , доктор техн. наук, зав. лабораторией защиты от шума вентиляционного и инженерно-технологического оборудования (НИИСФ)

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Основой для проектирования шумоглушения систем вентиляции и кондиционирования воздуха является акустический расчет - обязательное приложение к проекту вентиляции любого объекта. Основные задачи такого расчета: определение октавного спектра воздушного, структурного вентиляционного шума в расчетных точках и его требуемого снижения путем сопоставления этого спектра с допустимым спектром по гигиеническим нормам. После подбора строительно-акустических мероприятий по обеспечению требуемого снижения шума проводится поверочный расчет ожидаемых уровней звукового давления в тех же расчетных точках с учетом эффективности этих мероприятий.

Приведенные ниже материалы не претендуют на полноту изложения методики акустического расчета вентиляционных систем (установок). Они содержат сведения, которые уточняют, дополняют или по-новому раскрывают различные аспекты этой методики на примере акустического расчета вентилятора как основного источника шума вентиляционной системы. Материалы будут использованы при подготовке свода правил по расчету и проектированию шумоглушения вентиляционных установок к новому СНиП .

Исходными данными для акустического расчета являются шумовые характеристики оборудования - уровни звуковой мощности (УЗМ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1 000, 2 000, 4 000, 8 000 Гц. Для ориентировочных расчетов иногда используют корректированные уровни звуковой мощности источников шума в дБА .

Расчетные точки располагаются в местах обитания человека, в частности, на месте установки вентилятора (в вентиляционной камере); в помещениях или в зонах, граничащих с местом установки вентилятора; в помещениях, обслуживаемых системой вентиляции; в помещениях, где воздуховоды проходят транзитом; в зоне устройства приема или выброса воздуха, или только приема воздуха для рециркуляции.

Расчетная точка находится в помещении, где установлен вентилятор

В общем случае уровни звукового давления в помещении зависят от звуковой мощности источника и фактора направленности излучения шума, количества источников шума, от расположения расчетной точки относительно источника и ограждающих строительных конструкций, от размеров и акустических качеств помещения.

Октавные уровни звукового давления, создаваемые вентилятором (вентиляторами) в месте установки (в венткамере), равны:

где Фi - фактор направленности источника шума (безразмерный);

S - площадь воображаемой сферы или ее части, окружающей источник и проходящей через расчетную точку, м 2 ;

B - акустическая постоянная помещения, м 2 .

Расчетная точка находится в помещении, смежном с помещением, где установлен вентилятор

Октавные уровни воздушного шума, проникающего через ограждение в изолируемое помещение, смежное с помещением, где установлен вентилятор, определяются звукоизолирующей способностью ограждений шумного помещения и акустическими качествами защищаемого помещения, что выражается формулой :

(3)

где L ш - октавный уровень звукового давления в помещении с источником шума, дБ;

R - изоляция от воздушного шума ограждающей конструкцией, через которую проникает шум, дБ;

S - площадь ограждающей конструкции, м 2 ;

B u - акустическая постоянная изолируемого помещения, м 2 ;

k - коэффициент, учитывающий нарушение диффузности звукового поля в помещении.

Расчетная точка находится в помещении, обслуживаемом системой

Шум от вентилятора распространяется по воздуховоду (воздушному каналу), частично затухает в его элементах и через воздухораспределительные и воздухоприемные решетки проникает в обслуживаемое помещение. Октавные уровни звукового давления в помещении зависят от величины снижения шума в воздушном канале и акустических качеств этого помещения:

(4)

где L Pi - уровень звуковой мощности в i-й октаве, излучаемой вентилятором в воздушный канал;

D L сетиi - затухание в воздушном канале (в сети) между источником шума и помещением;

D L помi - то же, что в формуле (1) - формула (2).

Затухание в сети (в воздушном канале) D L Р сети - сумма затуханий в ее элементах, последовательно расположенных по ходу звуковых волн. Энергетическая теория распространения звука по трубам предполагает, что эти элементы не влияют друг на друга. В действительности последовательность фасонных элементов и прямых участков образуют единую волновую систему, при которой на чистых синусоидальных тонах принцип независимости затухания в общем случае не может оправдываться. Вместе с тем, в октавных (широких) полосах частот стоячие волны, создаваемые отдельными синусоидальными составляющими, компенсируют друг друга, и поэтому энергетический подход, не учитывающий волновой картины в воздуховодах и рассматривающий поток звуковой энергии, можно считать оправданным.

Затухание на прямых участках воздуховодов из листового материала обусловлено потерями на деформацию стенок и излучение звука наружу. О снижении уровня звуковой мощности D L Р на 1 м длины прямых участков металлических воздуховодов в зависимости от частоты можно судить по данным рис. 1.

Как видно, в воздуховодах прямоугольного сечения затухание (снижение УЗМ) с ростом частоты звука уменьшается, а круглого сечения возрастает. При наличии теплоизоляции на металлических воздуховодах приведенные на рис. 1 значения следует увеличивать примерно в два раза.

Понятие затухание (снижение) уровня потока звуковой энергии нельзя отождествлять с понятием изменения уровня звукового давления в воздушном канале. При движении звуковой волны по каналу общее количество энергии, которую она несет, уменьшается, но это не обязательно связано с уменьшением уровня звукового давления. В сужающемся канале, несмотря на затухание общего потока энергии, уровень звукового давления может увеличиваться вследствие увеличения плотности звуковой энергии. В расширяющемся канале, наоборот, плотность энергии (и уровень звукового давления) может уменьшаться быстрее, чем общая звуковая мощность. Затухание звука на участке с переменным сечением равно :

(5)

где L 1 и L 2 - средние уровни звукового давления в начальном и конечном по ходу звуковых волн сечениях участка канала;

F 1 и F 2 - площади поперечных сечений соответственно в начале и конце участка канала.

Затухание на поворотах (в коленах, отводах) с гладкими стенками, поперечное сечение которых меньше длины волны, определяется реактивным сопротивлением типа дополнительной массы и возникновением мод более высокого порядка. Кинетическая энергия потока на повороте без изменения сечения канала увеличивается из-за возникающей неравномерности поля скоростей. Прямоугольный поворот действует подобно фильтру низких частот. Величину снижения шума на повороте в диапазоне плоских волн дает точное теоретическое решение :

(6)

где K - модуль коэффициента прохождения звука.

При a ≥ l /2 величина K равна нулю и падающая плоская звуковая волна теоретически полностью отражается поворотом канала. Максимальное снижение шума наблюдается, когда глубина поворота равна примерно половине длины волны. О величине теоретического модуля коэффициента прохождения звука через прямоугольные повороты можно судить по рис. 2.

В реальных конструкциях по данным работ максимальное затухание равно 8-10 дБ, когда в ширине канала укладывается половина длины волны. С повышением частоты затухание уменьшается до 3-6 дБ в области длин волн, близких по величине к удвоенной ширине канала. Затем оно снова плавно возрастает на высоких частотах, достигая 8-13 дБ. На рис. 3 показаны кривые затухания шума на поворотах каналов для плоских волн (кривая 1) и для случайного, диффузного падения звука (кривая 2). Эти кривые получены на основе теоретических и экспериментальных данных. Наличие максимума снижения шума при a = l /2 можно использовать для снижения шума с низкочастотными дискретными составляющими, настраивая размеры каналов на поворотах на интересующую частоту.

Снижение шума на поворотах, угол которых меньше 90°, приближенно пропорционально величине угла поворота. Например, уменьшение уровня шума на повороте с углом 45° равно половине его уменьшения на повороте с углом 90°. На поворотах с углом меньше 45° уменьшение шума не учитывается. Для плавных поворотов и прямых колен воздуховодов с направляющими лопатками снижение шума (уровня звуковой мощности) можно определить, пользуясь кривыми рис. 4.

В разветвлениях каналов, поперечные размеры которых меньше половины длины звуковой волны, физические причины затухания аналогичны причинам затухания в коленах и отводах. Это затухание определяется следующим образом (рис. 5).

На основании уравнения неразрывности среды:

Из условия непрерывности давления (r п + r 0 = r пр) и уравнения (7) прошедшая звуковая мощность может быть представлена выражением

а снижение уровня звуковой мощности при площади сечения ответвления

(11)

(12)

(13)

При внезапном изменении сечения канала с поперечными размерами меньше длин полуволн (рис. 6 а), снижение уровня звуковой мощности может быть определено так же, как при разветвлениях.

Расчетная формула для такого изменения сечения канала имеет вид

(14)

где m - отношение большей площади сечения канала к меньшей.

Снижение уровней звуковой мощности, когда размеры каналов больше длины полуволн неплоских волн при внезапном сужении канала, равно

Если канал расширяется или плавно сужается (рис. 6 б и 6 г), то снижение уровня звуковой мощности равно нулю, т. к. отражение волн с длиной, меньшей размеров канала, не происходит.

В простых элементах вентиляционных систем принимают следующие величины снижения на всех частотах: калориферы и воздухоохладители 1,5 дБ, центральные кондиционеры 10 дБ, сетчатые фильтры 0 дБ, место примыкания вентилятора к сети воздуховодов 2 дБ .

Отражение звука от конца воздуховода происходит в том случае, если поперечный размер воздуховода меньше длины звуковой волны (рис. 7).

Если распространяется плоская волна, то в большом воздуховоде отражение отсутствует, и можно считать, что потерь на отражение нет. Однако если проем соединяет помещение больших размеров и открытое пространство, то в проем попадают только диффузные звуковые волны, направленные к проему, энергия которых равна четвертой части энергии диффузного поля. Поэтому в данном случае происходит ослабление уровня интенсивности звука на 6 дБ.

Характеристики направленности излучения звука воздухораспределительными решетками указаны на рис. 8.

При расположении источника шума в пространстве (например, на колонне в большом помещении) S = 4p r 2 (излучение в полную сферу); в средней части стены, перекрытия S = 2p r 2 (излучение в полусферу); в двугранном углу (излучение в 1/4 сферы) S = p r 2 ; в трехгранном углу S = p r 2 /2.

Ослабление уровня шума в помещении определяется формулой (2). Расчетная точка выбирается в месте постоянного пребывания людей, ближайшем к источнику шума, на расстоянии 1,5 м от пола. Если шум в расчетной точке создается несколькими решетками, то акустический расчет производится с учетом их суммарного воздействия.

Когда источником шума является участок транзитного воздуховода, проходящего через помещение, исходными данными для расчета по формуле (1) служат октавные уровни звуковой мощности излучаемого им шума, определяемые по приближенной формуле:

(16)

где L pi - уровень звуковой мощности источника в i-й октавной полосе частот, дБ;

D L’ Рсетиi - затухание в сети между источником и рассматриваемом транзитным участком, дБ;

R Ti - звукоизоляция конструкции транзитного участка воздуховода, дБ;

S T - площадь поверхности транзитного участка, выходящая в помещение, м 2 ;

F T - площадь поперечного сечения участка воздуховода, м 2 .

Формула (16) не учитывает повышения плотности звуковой энергии в воздуховоде за счет отражений; условия падения и прохождения звука через конструкцию воздуховода существенно отличаются от прохождения диффузного звука через ограждения помещения.

Расчетные точки находятся на прилегающей к зданию территории

Шум вентилятора распространяется по воздуховоду и излучается в окружающее пространство через решетку или шахту, непосредственно через стенки корпуса вентилятора или открытый патрубок при установке вентилятора снаружи здания.

При расстоянии от вентилятора до расчетной точки много больше его размеров источник шума можно считать точечным.

В этом случае октавные уровни звукового давления в расчетных точках определяются по формуле

(17)

где L Pоктi - октавный уровень звуковой мощности источника шума, дБ;

D L Pсетиi - суммарное снижение уровня звуковой мощности по пути распространения звука в воздуховоде в рассматриваемой октавной полосе, дБ;

D L нi - показатель направленности излучения звука, дБ;

r - расстояние от источника шума до расчетной точки, м;

W - пространственный угол излучения звука;

b a - затухание звука в атмосфере, дБ/км.

Если имеется ряд из нескольких вентиляторов, решеток или другой протяженный источник шума ограниченных размеров, то третий член в формуле (17) принимается равным 15 lgr .

Расчет структурного шума

Структурный шум в помещениях, смежных с вентиляционными камерами, возникает в результате передачи динамических сил от вентилятора на перекрытие. Октавный уровень звукового давления в смежном изолируемом помещении определяют по формуле

Для вентиляторов, расположенных в техническом помещении вне пределов перекрытия над изолируемым помещением:

(20)

где L Pi - октавный уровень звуковой мощности воздушного шума, излучаемого вентилятором в вентиляционную камеру, дБ;

Z c - суммарное волновое сопротивление элементов виброизоляторов, на которых установлена холодильная машина, Н с/м;

Z пер - входной импеданс перекрытия - несущей плиты, в отсутствие пола на упругом основании, плиты пола - при его наличии, Н с/м;

S - условная площадь перекрытия технического помещения над изолируемым помещением, м 2 ;

S = S 1 при S 1 > S u /4; S = S u /4; при S 1 ≤ S u /4, или если техническое помещение не находится над изолируемым помещением, но имеет одну общую с ним стену;

S 1 - площадь технического помещения над изолируемым помещением, м 2 ;

S u - площадь изолируемого помещения, м 2 ;

S в - общая площадь технического помещения, м 2 ;

R - собственная изоляция воздушного шума перекрытием, дБ.

Определение требуемого снижения шума

Требуемое снижение октавных уровней звукового давления рассчитывают отдельно для каждого источника шума (вентилятора, фасонных элементов, арматуры), но при этом учитывают число однотипных по спектру звуковой мощности источников шума и величины уровней звукового давления, создаваемых каждым из них в расчетной точке. В общем случае требуемое снижение шума для каждого источника должно быть таким, чтобы суммарные уровни во всех октавных полосах частот от всех источников шума не превышали допустимые уровни звукового давления .

При наличии одного источника шума требуемое снижение октавных уровней звукового давления определяется по формуле

где n - общее количество принимаемых в расчет источников шума.

В общее количество источников шума n при определении D L трi требуемого снижения октавных уровней звукового давления на территории городской застройки следует включать все источники шума, которые создают в расчетной точке уровни звукового давления, отличающиеся менее чем на 10 дБ.

При определении D L трi для расчетных точек в помещении, защищаемом от шума системы вентиляции, в общее количество источников шума следует включать:

При расчете требуемого снижения шума вентилятора - количество систем, обслуживающих помещение; шум, генерируемый воздухораспределительными устройствами и фасонными элементами, при этом не учитывается;

При расчете требуемого снижения шума, генерируемого воздухораспределительными устройствами рассматриваемой вентиляционной системы, - количество систем вентиляции, обслуживающих помещение; шум вентилятора, воздухораспределительных устройств и фасонных элементов при этом не учитывается;

При расчете требуемого снижения шума, генерируемого фасонными элементами и воздухораспределительными устройствами рассматриваемого ответвления, - количество фасонных элементов и дросселей, уровни шума которых отличаются один от другого менее чем на 10 дБ; шум вентилятора и решеток при этом не учитывается.

Вместе с тем в общем количестве принимаемых в расчет источников шума не учитываются источники шума, создающие в расчетной точке уровень звукового давления на 10 дБ меньшие, чем допустимый, при их количестве не более 3 и на 15 дБ меньше допустимого при их числе не более 10.

Как видно, акустический расчет - не простая задача. Необходимую точность ее решения обеспечивают специалисты-акустики. От точности выполняемого акустического расчета зависит эффективность шумоглушения и стоимость его осуществления. Если величина рассчитанного требуемого снижения шума занижена, то мероприятия будут недостаточно эффективны. В этом случае потребуется устранение недостатков на действующем объекте, что неизбежно связано с существенными материальными затратами. При завышенном требуемом снижении шума неоправданные затраты закладываются непосредственно в проект. Так, только за счет установки глушителей, длина которых больше требуемой на 300-500 мм, дополнительные затраты на средних и крупных объектах могут составить 100-400 тысяч рублей и более.

Литература

1. СНиП II-12-77. Защита от шума. М.: Стройиздат, 1978.

2. СНиП 23-03-2003. Защита от шума. Госстрой России, 2004.

3. Гусев В. П. Акустические требования и правила проектирования малошумных систем вентиляции // АВОК. 2004. № 4.

4. Руководство по расчету и проектированию шумоглушения вентиляционных установок. М.: Стройиздат, 1982.

5. Юдин Е. Я., Терехин А. С. Борьба с шумом шахтных вентиляционных установок. М.: Недра, 1985.

6. Снижение шума в зданиях и жилых районах. Под ред. Г. Л. Осипова, Е. Я. Юдина. М.: Стройиздат, 1987.

7. Хорошев С. А., Петров Ю. И., Егоров П. Ф. Борьба с шумом вентиляторов. М.: Энергоиздат, 1981.

Общие технические и организационные методы борьбы с шумом и вибрациями на производстве

Борьба с шумом и вибрациями на промышленном предприятии - это комплекс инженерно-технических мероприятий. Выявление источников и причин возникновения шума и вибраций должно быть совмещено с регистрацией и изучением их спектров. Только опираясь на исследования амплитудно-частотных характеристик, можно наметить и провести в жизнь технические мероприятия, направленные на устранение причин возникновения вибраций и шума. Расстановка оборудования в цехах должна производиться не только с учетом технологического процесса, удобства монтажа, ремонта, но и с учетом требований обеспечения здоровых условий труда.

Шумное оборудование следует группировать отдельно и устанавливать или в изолированном помещении, или в отдельной части цеха со звукоизолирующими или экранирующими перегородками.

При разработке технологических процессов, а также при проектировании участков, цехов, оборудования выполняется расчет ожидаемых шумовых полей в местах длительного пребывания людей.

Для этого необходимо выполнить акустический расчет, который включает:

· выявление источников шума и определение их шумовых характеристик;

· выбор расчетных точек в помещении, для которых производится расчет допустимых уровней звукового давления для этих точек;

· определение ожидаемых уровней звукового давления в расчетных точках до осуществления мероприятий по снижению шума с учетом снижения уровней звуковой мощности по пути распространения шума;

· определение требуемого снижения уровня звукового давления в расчетных точках;

· выбор мероприятий для обеспечения требуемого снижения уровней звукового давления в расчетных точках;

· расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок, звукоизолирующих кожухов и т. п.).

В начале расчета необходимо выявить все источники шума в производственных помещениях, обратив особое внимание на особо мощные источники. Шумовые характеристики оборудования и установок указываются заводом - изготовителем в прилагаемой технической документации.

Расчетные точки внутри помещения выбирают по ГОСТ 12.1.050-86. ССБТ «Методы измерения шума на рабочих местах».

В зоне постоянного пребывания людей выбирают не менее двух расчетных точек на высоте 1,5 м от уровня пола или рабочей площадки. При одном источнике шума в помещении первая расчетная точка берется на рабочем месте, при нескольких однотипных источниках - на рабочем месте в средней части помещения. Вторая расчетная точка берется в зоне постоянного пребывания людей, не связанных с работой оборудования. Если имеется несколько различных источников, отличающихся друг от друга по октавным уровням звуковой мощности более чем на 15 дБ хотя бы в одной октавной полосе, то на рабочих местах берутся две расчетные точки: у источников с максимальным и минимальным уровнями шума. Для цехов с групповым размещением однотипного оборудования расчетные точки берутся в центре каждой группы. Допустимые уровни звукового давления принимаются на основании ГОСТ 12.1.003-86, ССБТ «Шум. Общие требования безопасности».


Определение ожидаемых уровней звукового давления в расчетных точках .

При проведении расчетов ожидаемых уровней звукового давления в производственных помещениях наиболее часто расчетная точка находится в том же помещении, где установлен источник шума или в соседнем помещении.

А. Расчетная точка находится в помещении с одним источником шума.

L = L P +101g(Ф/4r 2 +4/B) (2.27)

где L - уровень звукового давления, дБ;

L p - уровень звуковой мощности источника шума, дБ;

Ф - фактор направленности источника для направления в точку наблюдения;

r-расстояние от геометрического центра источника до расчетной точки,м;

В - постоянная помещения (определяется по графику зависимости от объема помещения), м 2 ;

Б. Расчетная точка находится в помещении с несколькими источниками шума.

L=10lg(іФ/4г 2 +4/Ві) (2.28)

где i = 10 0,1 Lp і - сумма уровней звуковой мощности для i - того источника шума;

Lpi -уровень звуковой мощности i - того источника, дБ;

m i - число источников, находящихся в зоне прямой видимости из расчетной точки;

п - общее число источников в помещении с учетом среднего коэффициента одновременности работы оборудования.

В . Расчетная точка расположена в изолируемом от источников шума помещении.

Если источники (или один источник) шума расположены в смежном с изолируемым помещении, а шум проникает в изолируемое помещение через ограждающие конструкции, то ожидаемые уровни в расчетной точке определяются по формуле:

L = Lр.сум - 10 lg Ви + 10 lg Sorp - R - 10 lg Вш + 6, дБ (2.29)

Lp cyм=101g Lpi (2.30)

Lp сум - суммарный уровень звуковой мощности, излучаемый всеми источниками, находящимися в рассматриваемом шумном помещении, дБ;

m - общее количество источников шума; (если источник шума один, m = 1, Lp сум = Lp, где Lp - уровень звуковой мощности этого источника);

Ви, Вш - соответственно постоянные изолируемого и шумного помещений, м 2 ;

Sorp - площадь ограждения, м 2 ;

R-звукоизолирующая способность ограждения, через которое шум проникает в изолируемое помещение, дБ.

R = 201gQ + 201gf-54, (2.31)

где Q - вес 1-го м 2 ограждения заданной толщины, кг / м 2 ;

f- частота звука, Гц.

f rp =----------- , (2.32)

где f г p - частота волнового совпадения, от которой звукоизолирующая способность не будет возрастать, Гц;

с 1 - скорость распространения звуковых волн, м/с;

h - толщина преграды, см.

Определение требуемого снижения уровней звукового давления

Требуемое снижение уровней звукового давления L определяется по формуле:

L= L-L доп ()

где L-измеренный уровень звукового давления на рабочих местах действующего предприятия, определенный в расчетных точках (см. п. 3);

L доп -допустимые по нормам уровни звукового давления, дБ по ГОСТ 12.1.003-86. «Шум. Общие требования безопасности».

Методы и средства коллективной и индивидуальной

защиты от шума

После получения требуемого снижения уровней звукового давления необходимо выбрать метод защиты от шума.

Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

Методы относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Снижение шума можно достичь только путем обесшумливания всего оборудования с высоким уровнем шума.

Работу относительно обесшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

Борьба с шумом в источнике его возникновения – наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

Архитектурно-планировочный аспект коллективной защиты от шума – предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков, что защищает рабочее место и человека от непосредственного влияния прямого звука.

Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Звукопоглощение используется при акустической обработке помещений.

Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы; устанавливаются резонаторные экраны, т.е. искусственные поглотители. Эффект акустической обработки больше в низких помещениях (где высота не превышает 6м). Акустическая обработка позволяет снизить шум на 8 дБА.

Уровень звука после применения звукопоглощающей облицовки рассчитывают по формуле:

L=10, (2.32)

А 1 =В ш S/ В ш +S, (2.35)

S – общая площадь всех поверхностей помещения


  • 1.1.5.Государственные нормативные акты об охране труда
  • 1.1.6.Ответственность за нарушение законодательства об охране труда
  • 1.1.7. Государственный надзор и общественный контроль за охраной труда
  • 1.1.8. Общественный контроль за соблюдением законодательства об охране труда
  • Полномочия и права профсоюзов в осуществлении контроля за соблюдением законодательства об охране труда
  • Уполномоченные наемными работниками лица по вопросам охраны труда
  • 1.1.9. Организационные вопросы охраны труда. Органы государственного управления охраной труда
  • 1.1.10. Служба охраны труда предприятия
  • 1.1.11. Комиссия по вопросам охраны труда предприятия
  • 1.1.12. Обучение по вопросам охраны труда
  • 1.1.13. Обучение по вопросам охраны труда при приеме на работу и в процессе работы
  • 1.1.14. Инструктажи по вопросам охраны труда
  • Порядок проведения инструктажей для работников
  • 1.1.15. Стажировка (дублирование) и допуск работников к работе
  • 1.1.16. Производственный травматизм и профессиональные заболевания
  • Специальное расследование несчастных случаев.
  • Расследование и учет хронических профессиональных заболеваний и отравлений.
  • Расследование и учет аварий *
  • 1.1.17. Методы анализа производственного травматизма и профзаболеваемости
  • Основные причины производственного травматизма и профзаболеваемостии мероприятия по их предупреждению
  • 1.1.18. Государственное страхование от несчастного случая и профессионального заболевания
  • Раздел № 2. Основы физиологии, гигиены труда и производственной санитарии
  • 2.1.Общие положения
  • 2.1.1. Законодательство в области гигиены труда
  • 2.1.2. Физиологические особенности различных видов деятельности
  • 2.1.3. Гигиеническая классификация труда
  • 2.2. Микроклимат производственных помещений
  • 2.2.1.Влияние параметров микроклимата на организм человека
  • 2.2.2. Нормализация параметров микроклимата
  • 2.3. Загрязнение воздуха производственных помещений
  • 2.3.1. Влияние вредных веществ на организм человека
  • 2.3.2. Нормирование вредных веществ
  • 2.3.3. Основные мероприятия по нормализации воздушной среды
  • 2.4. Вентиляция производственных помещений
  • 2.4.1. Назначение и классификация систем вентиляции
  • 2.4.2. Естественная вентиляция
  • 2.4.3. Искусственная вентиляция
  • Местная вентиляция
  • Методы расчета систем искусственной вентиляции
  • Определение выделений тепла. Расчет воздухообмена при проектировании общеобменной вентиляции и кондиционирования воздуха.
  • Характеристика остекления
  • 2.5. Организация производственного освещения
  • 2.5.1. Общие требования и рекомендации по организации производственного освещения Основные светотехнические понятия и единицы
  • 2.5.2. Организация естественного освещения
  • 2.5.3. Организация искусственного освещения
  • Расчет искусственного освещения
  • Методы расчета искусственного освещения.
  • 2.6.Производственный шум и методы борьбы с ним
  • Нормирование шума
  • 2.6.1. Общие методы борьбы с производственным шумом
  • Акустический расчет
  • 3 Раздел Основы техники безопасности
  • 1. Безопасность технологических процессов.
  • 2. Безопасность производственного оборудования.
  • 3. Обеспечение электробезопасности на промышленных предприятиях.
  • 4.Защита от статического электричества, в том числе и от атмосфер­ного электричества.
  • 5.Безопасность устройства и эксплуатации подъемно-транспортного оборудования.
  • 6. Безопасность использования сосудов и аппаратов, работающих под давлением (баллоны, паровые и водогрейные котлы, компрессорные установки, цистерны и др.).
  • Раздел 4. Пожарная безопасность
  • 4.1. Основные сведения о пожарной и взрывной безопасности
  • 4.2. Пожароопасность материалов и веществ
  • 4.3.Категории помещений и зданий и классы зон по пожарной и взрывной опасности
  • 4.3.1 Категории помещений и зданий по пожарной и взрывной опасности по онтп 24-86
  • 4.4. Тушение пожаров
  • Список рекомендуемой литературы
  • Раздел 1 Правовые и организационные вопросы охраны труда……..11
  • Раздел 2 Основы физиологии, гигиены труда и
  • Раздел 3 Основы техники безопасности……………………….......151
  • Раздел 4 Пожарная безопасность……………………………….....164
  • Акустический расчет

    Общие технические и организационные методы борьбы с шумом и вибрациями на производстве

    Борьба с шумом и вибрациями на промышленном предприятии - это комплекс инженерно-технических мероприятий. Выявление источников и причин возникновения шума и вибраций должно быть совмещено с регистрацией и изучением их спектров. Только опираясь на исследования амплитудно-частотных характеристик, можно наметить и провести в жизнь технические мероприятия, направленные на устранение причин возникновения вибраций и шума. Расстановка оборудования в цехах должна производиться не только с учетом технологического процесса, удобства монтажа, ремонта, но и с учетом требований обеспечения здоровых условий труда.

    Шумное оборудование следует группировать отдельно и устанавливать или в изолированном помещении, или в отдельной части цеха со звукоизолирующими или экранирующими перегородками.

    При разработке технологических процессов, а также при проектировании участков, цехов, оборудования выполняется расчет ожидаемых шумовых полей в местах длительного пребывания людей.

    Для этого необходимо выполнить акустический расчет, который включает:

      выявление источников шума и определение их шумовых характеристик;

      выбор расчетных точек в помещении, для которых производится расчет допустимых уровней звукового давления для этих точек;

      определение ожидаемых уровней звукового давления в расчетных точках до осуществления мероприятий по снижению шума с учетом снижения уровней звуковой мощности по пути распространения шума;

      определение требуемого снижения уровня звукового давления в расчетных точках;

      выбор мероприятий для обеспечения требуемого снижения уровней звукового давления в расчетных точках;

      расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок, звукоизолирующих кожухов и т. п.).

    В начале расчета необходимо выявить все источники шума в производственных помещениях, обратив особое внимание на особо мощные источники. Шумовые характеристики оборудования и установок указываются заводом - изготовителем в прилагаемой технической документации.

    Расчетные точки внутри помещения выбирают по ГОСТ 12.1.050-86. ССБТ «Методы измерения шума на рабочих местах».

    В зоне постоянного пребывания людей выбирают не менее двух расчетных точек на высоте 1,5 м от уровня пола или рабочей площадки. При одном источнике шума в помещении первая расчетная точка берется на рабочем месте, при нескольких однотипных источниках - на рабочем месте в средней части помещения. Вторая расчетная точка берется в зоне постоянного пребывания людей, не связанных с работой оборудования. Если имеется несколько различных источников, отличающихся друг от друга по октавным уровням звуковой мощности более чем на 15 дБ хотя бы в одной октавной полосе, то на рабочих местах берутся две расчетные точки: у источников с максимальным и минимальным уровнями шума. Для цехов с групповым размещением однотипного оборудования расчетные точки берутся в центре каждой группы. Допустимые уровни звукового давления принимаются на основании ГОСТ 12.1.003-86, ССБТ «Шум. Общие требования безопасности».

    Определение ожидаемых уровней звукового давления в расчетных точках .

    При проведении расчетов ожидаемых уровней звукового давления в производственных помещениях наиболее часто расчетная точка находится в том же помещении, где установлен источник шума или в соседнем помещении.

    А. Расчетная точка находится в помещении с одним источником шума.

    L = L P +101g(Ф/4r 2 +4/B) (2.27)

    где L - уровень звукового давления, дБ;

    L p - уровень звуковой мощности источника шума, дБ;

    Ф - фактор направленности источника для направления в точку наблюдения;

    r-расстояние от геометрического центра источника до расчетной точки,м;

    В - постоянная помещения (определяется по графику зависимости от объема помещения), м 2 ;

    Б. Расчетная точка находится в помещении с несколькими источниками шума.

    L=10lg(іФ/4г 2 +4/Ві) (2.28)

    где i = 10 0,1 Lp і - сумма уровней звуковой мощности для i - того источника шума;

    Lpi -уровень звуковой мощности i - того источника, дБ;

    m i - число источников, находящихся в зоне прямой видимости из расчетной точки;

    п - общее число источников в помещении с учетом среднего коэффициента одновременности работы оборудования.

    В . Расчетная точка расположена в изолируемом от источников шума помещении.

    Если источники (или один источник) шума расположены в смежном с изолируемым помещении, а шум проникает в изолируемое помещение через ограждающие конструкции, то ожидаемые уровни в расчетной точке определяются по формуле:

    L = Lр.сум - 10 lg Ви + 10 lg Sorp - R - 10 lg Вш + 6, дБ (2.29)

    Lp cyм=101g Lpi (2.30)

    Lp сум - суммарный уровень звуковой мощности, излучаемый всеми источниками, находящимися в рассматриваемом шумном помещении, дБ;

    m - общее количество источников шума; (если источник шума один, m = 1, Lp сум = Lp, где Lp - уровень звуковой мощности этого источника);

    Ви, Вш - соответственно постоянные изолируемого и шумного помещений, м 2 ;

    Sorp - площадь ограждения, м 2 ;

    R-звукоизолирующая способность ограждения, через которое шум проникает в изолируемое помещение, дБ.

    R = 201gQ + 201gf-54, (2.31)

    где Q - вес 1-го м 2 ограждения заданной толщины, кг / м 2 ;

    f- частота звука, Гц.

    f rp =----------- , (2.32)

    где f г p - частота волнового совпадения, от которой звукоизолирующая способность не будет возрастать, Гц;

    с 1 - скорость распространения звуковых волн, м/с;

    h - толщина преграды, см.

    Определение требуемого снижения уровней звукового давления

    Требуемое снижение уровней звукового давления L определяется по формуле:

    L= L-L доп ()

    где L-измеренный уровень звукового давления на рабочих местах действующего предприятия, определенный в расчетных точках (см. п. 3);

    L доп -допустимые по нормам уровни звукового давления, дБ по ГОСТ 12.1.003-86. «Шум. Общие требования безопасности».

    Методы и средства коллективной и индивидуальной

    защиты от шума

    После получения требуемого снижения уровней звукового давления необходимо выбрать метод защиты от шума.

    Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

    Методы относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Снижение шума можно достичь только путем обесшумливания всего оборудования с высоким уровнем шума.

    Работу относительно обесшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

    Борьба с шумом в источнике его возникновения – наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

    Архитектурно-планировочный аспект коллективной защиты от шума – предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

    Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

    Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

    Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков, что защищает рабочее место и человека от непосредственного влияния прямого звука.

    Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Звукопоглощение используется при акустической обработке помещений.

    Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы; устанавливаются резонаторные экраны, т.е. искусственные поглотители. Эффект акустической обработки больше в низких помещениях (где высота не превышает 6м). Акустическая обработка позволяет снизить шум на 8 дБА.

    Уровень звука после применения звукопоглощающей облицовки рассчитывают по формуле:

    L=10, (2.32)

    где В – постоянная помещения, м 2 ;

    В 1 – постоянная помещения после акустической обработки, м 2 .

    В 1 =
    , (2.33)

    Где А 1 – эквивалентная площадь звукопоглощения поверхностями не занятыми звукопоглощающей облицовкой;

    - добавочное звукопоглощение, вносимое звукопоглощающей облицовкой;

    А 1 =(S-S обл) – эквивалентная площадь звукопоглощения поверхностями не занятыми звукопоглощающей облицовкой;

    - средний коэффициент звукопоглощения акустически обработанного помещения.

    = S обл обл, (2.34)

    S обл – площадь звукопоглощения облицовки;

    обл – реверберационный коэффициент звукопоглощающей облицовки.

    А 1 =В ш S/ В ш +S, (2.35)

    S – общая площадь всех поверхностей помещения

    =А 1
    /S (2.36)

    • Выбор облицовочных материалов
    • Распределение акустических систем
    • Вывод результатов расчета



    Правильное размещение аппа ратуры при любых акустических характеристиках зала позволяет получить хорошее качество восприятия различных звуков: речи, музыки, шумов. В пространстве расположения зрителей, участвующих в мероприятии, требуется обеспечить нужную громкость, разборчивость и звучание без искажений во всем диапазоне частот аудио сигнала. С этой целью предлагаем услугу проведения профессионального акустического расчета . Он позволяет выбрать облицовочный материал поверхностей, разборчивость речи и состав аудиосистемы.

    Нашей компанией проводятся электро-акустические расчеты для различных объектов: стадионов , бассейнов , теннисных кортах , прочих спортивных объектов , концертных залов , ресторанов , открытых площадок , Храмов , залов для проведения концертов и конференций . Рассчитывая акустику, специалисты учитывают особенности архитектуры помещения и специфику проводимого в нем мероприятия. Требуемая оптимальная величина звукового давления различна в случаях трансляции объявлений диктора, фонового музыкального сопровождения, концерта звезды или классической музыки.

    При расчете звуковой аппаратуры для конкретного зала, проводится анализ помещения. На его основании выбирают оптимальное распределение звукового поля и места размещения колонок. Используются план, разрезы помещения, описание отделочных материалов потолка, стен.

    Чтобы заказать акустический расчет , следует предоставить исходные данные с указанием габаритных размеров площадки, высоту потолка, материалы, характер мероприятия. Предоставляют чертежи либо эскизы. При необходимости исполнителем проекта на месте проводятся замеры.

    При расчете мощности акустической системы как один из параметров учитывается уровень шума. Он зависит от числа людей в зале и их действий. Большее звуковое давление требуется на танцплощадке. Имеет значение также удаленность слушателей от источников звукового сигнала. Их размещают таким образом, чтобы обеспечить равномерность звукового поля для всех зрительских мест. Если в помещении имеются балконы и бельэтаж, то для них добовляются линии задержки и расчеты проводятся для каждой зоны совокупно.

    Воспользовавшись предложенной компанией услугой проведения расчета и подбора акустической системы, можно организовать качественную трансляцию звука в любом месте: в зале ресторана, клуба или на стадионе. По нашим расчетам, наши специалисты выполняют также установку аппаратуры и ее настройку.

    Основой проектирование звуковой системы или системы озвучивания помещений является акустический расчет. С помощью акустического расчета можно понять какие акустические системы лучше всего выбрать для данного зала и как лучше всего их расположить для обеспечение равномерного распределения звука. С помощью расчета звука так же есть возможность согласовать с заказчиком в каких зонах нужно изменить уровень громкости звукового сигнала для обеспечения комфортности зрителей. Еще одна задача которую можно выполнить с помощью акустического расчета это расчет звукопоглощения, подбор облицовочных материалов зала или помещения, где будет установлена звуковая система, для обеспечении качественной разборчивости речи и хорошего восприятие музыки.

    Вопрос акустической обработки различных помещений является очень актуальным в настоящее время. С появлением новых моделей звукозаписывающей и звуковоспроизводящей аппаратуры она стала обязательной.

    Современная промышленность предлагает огромный выбор отделочных материалов с различными частотными свойствами, что позволяет при правильном их выборе получить необходимые частотные характеристики помещений кинозалов, студий звукозаписи, речевых студий, концертных залов, вокзалов, аэропортов, конференц-залов, ночных клубов и множества других.

    Выбор материалов производился по различным критериям, в том числе экономическому. Таким образом, можно выбрать недорогие материалы, но при этом все требования к частотным характеристикам помещения выполняются. Правильность выбора материалов будет подтверждена расчетом частотных характеристик.



    Для создания модели под акустический расчет необходимы все размеры зала. В специализированной программе EASE создается 3D-модель зала точная копия, со всеми размерами, в которой подбираются материалы по коэффициенту звукопоглощения для достижения рекомендуемого времени реверберации под определенный тип зала и его назначения.

    На рисунке показаны графики для различных залов:

    • 1 - залы для ораторий и органной музыки;
    • 2 - залы для симфонической музыки;
    • 3 - залы для камерной музыки, залы оперных театров;
    • 4 - залы многоцелевого назначения, залы музыкально-драматических театров, спортивные залы;
    • 5 - лекционные залы, залы заседаний, залы драматических театров, кинозалы, пассажирские залы.

    Как только рекомендуемое расчетное время реверберации достигло нужного результата, в модели зала устанавливаются симуляторы акустических систем (громкоговорителей). Файлы-симуляторы громкоговорителей находятся в базе программы акустического расчета EASE и периодически пополняется. В 3D-модели зала (помещения) можно распределить симуляторы акустических систем как угодно, для этого специалисты пользуются определенным правилам которые необходимо соблюдать для озвучивания залов и других помещений. Как и в реальности акустические системы можно устанавливать на основание (например: на пол или на сцену), на высоте (подвесные громкоговорители) и встраивать в потолок или в стену.

    При расчете программа будет выдавать несколько параметров, по которым можно сформировать благоприятную акустическую картинку.

    Звуковое давление - расчет

    Данный параметр описывает распределение звукового давления по площади зрительской зоны без учета отражений. Величина неравномерности: разница между максимальным и минимальным значением давления характеризует корректность применения акустических систем и мест их размещения.

    Коэффициент потери согласных

    Коэффициент потери согласных или ARTICULATION LOSS - графическое отображение потери артикуляции согласных в процентах. Это обратный критерий, 0% - идеальное значение параметра, описывающее отсутствие потери согласных; 100% - наихудшее значение параметра, описывающее полную потерю согласных.

    • от 0% до 7% - наилучший результат;
    • от 7% до 11% - хороший результат;
    • от 11% до 15% - удовлетворительный результат;
    • выше 15% - плохой результат.

    В акустике термин "разборчивость" обозначает возможность слышать и правильно различать все фонемы, т.е. составные элементы языка. Разборчивость речи - самый важный параметр при оценке качества воспроизведения звука, и зависит, прежде всего, от правильного понимания согласных букв. Реверберация и высокий уровень фонового шума искажают разборчивость речи. Процент "потерянных" согласных букв дает оценку разборчивости сообщения и обозначается ALCons.

    При акустическом сигнале, таком как речь, чрезвычайно изменчивом во времени и при всевозможном шуме окружающей среды, достаточно высокое соотношение сигнал/шум (хотя бы 10 дБ) способствует наилучшему восприятию сообщения. Разборчивость уменьшается при увеличении расстояния между источником и слушателем до предельного расстояния. Для больших расстояний разборчивость остается постоянной, каким бы ни было расстояние до слушателя, но зависит от времени реверберации.

    Любое положение слушателя характеризуется определенным значением Alcons. Уменьшение этого значения довольно сложно, т. к. предполагает изменение геометрии помещения и/или имеющихся в нем материалов.

    Разборчивость речи

    Разборчивость речи оценивается с помощью коэффициента STI . Данный параметр является главным коэффициентом для оценки качества звучания музыкальной системы. Для различных видов помещений или задач существуют свои диапазоны, в предел которых необходимо, чтобы значение коэффициента STI уложилось.

    Коэффициент STI зависит от всех параметров: размеры помещения, дальность излучателя звука, уровень шума, зрителей, облицовка помещения, время реверберации, уровень звукового давления.

    • от 0,6 до 1 - наилучший результат;
    • от 0,45 до 0,6 - хороший результат;
    • от 0,3 до 0,45 - Удовлетворительный результат;
    • от 0 до 0,3 - плохой результат.

    Коэффициент музыкальной ясности.

    Коэффициент музыкальной ясности С80.

    • 0дБ -для органной, романтическая музыки;
    • +2дБ -для классической муз., хора, церковного пения;
    • +4дБ -для поп. Музыки;
    • +6дБ -для рок-н-ролла.

    Наша компания производит профессиональный акустический расчет любой сложности, специалисты прошедшие обучение специализированной программы EASE имеют сертификат, который выдается в центре обучения "AFMG" в г. Берлине, что подтверждает ниже предоставленный сертификат:

    Акустический расчет помещения необходим для точной установки акустических систем в зале. Так же акустический расчет производится для оптимизации акустических свойств помещения.