Средней статистической величиной является. Как вычислять среднее значение ряда чисел

У этого термина существуют и другие значения, см. среднее значение.

Сре́днее арифмети́ческое (в математике и статистике) множества чисел - сумма всех чисел, делённая на их количество. Является одной из наиболее распространённых мер центральной тенденции.

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами.

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

Введение

Обозначим множество данных X = (x 1 , x 2 , …, x n ), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (x ¯ {\displaystyle {\bar {x}}} , произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки x i из этой совокупности μ = E{x i } есть математическое ожидание этой выборки.

На практике разница между μ и x ¯ {\displaystyle {\bar {x}}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\displaystyle {\bar {x}}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

X ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).}

Если X - случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X . Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n , тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

Примеры

  • Для трёх чисел необходимо сложить их и разделить на 3:
x 1 + x 2 + x 3 3 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}}{3}}.}
  • Для четырёх чисел необходимо сложить их и разделить на 4:
x 1 + x 2 + x 3 + x 4 4 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.}

Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

Непрерывная случайная величина

Для непрерывно распределённой величины f (x) {\displaystyle f(x)} среднее арифметическое на отрезке [ a ; b ] {\displaystyle } определяется через определённый интеграл:

F (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x {\displaystyle {\overline {f(x)}}_{}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx}

Некоторые проблемы применения среднего

Отсутствие робастности

Основная статья: Робастность в статистике

Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы, из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон, подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса. Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

Сложный процент

Основная статья: Окупаемость инвестиций

Если числа перемножать , а не складывать , нужно использовать среднее геометрическое, а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % - это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

[$30 (1 - 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % {\displaystyle {\sqrt {117\%}}\approx 108.2\%} , то есть среднегодовой прирост 8,2 %.

Направления

Основная статья: Статистика направлений

При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно 1 ∘ + 359 ∘ 2 = {\displaystyle {\frac {1^{\circ }+359^{\circ }}{2}}=} 180°. Это число неверно по двум причинам.

  • Во-первых, угловые меры определены только для диапазона от 0° до 360° (или от 0 до 2π при измерении в радианах). Таким образом, ту же пару чисел можно было бы записать как (1° и −1°) или как (1° и 719°). Средние значения каждой из пар будут отличаться: 1 ∘ + (− 1 ∘) 2 = 0 ∘ {\displaystyle {\frac {1^{\circ }+(-1^{\circ })}{2}}=0^{\circ }} , 1 ∘ + 719 ∘ 2 = 360 ∘ {\displaystyle {\frac {1^{\circ }+719^{\circ }}{2}}=360^{\circ }} .
  • Во-вторых, в данном случае, значение 0° (эквивалентное 360°) будет геометрически лучшим средним значеним, так как числа отклоняются от 0° меньше, чем от какого-либо другого значения (у значения 0° наименьшая дисперсия). Сравните:
    • число 1° отклоняется от 0° всего на 1°;
    • число 1° отклоняется от вычисленного среднего, равного 180°, на 179°.

Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° - один градус, между 0° и 1° - тоже 1°, в сумме - 2°).

Виды средних величин и методы их расчета

На этапе статистической обработки могут быть поставлены самые различные задачи исследования, для решения которых нужно выбрать соответствующую среднюю. При этом необходимо руководствоваться следующим правилом: величины, которые представляют собой числитель и знаменатель средней, должны быть логически связаны между собой.

  • степенные средние ;
  • структурные средние .

Введем следующие условные обозначения:

Величины, для которых исчисляется средняя;

Средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;

Частота (повторяемость индивидуальных значений признака).

Различные средние выводятся из общей формулы степенной средней:

(5.1)

при k = 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = -2 - средняя квадратическая.

Средние величины бывают простые и взвешенные. Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи с чем каждый вариант приходится умножать на эту численность. Иными словами, «весами» выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней .

Средняя арифметическая - самый распространенный вид средней. Она используется, когда расчет осуществляется по несгруппированным статистическим данным, где нужно получить среднее слагаемое. Средняя арифметическая - это такое среднее значение признака, при получении которого сохраняется неизменным общий объем признака в совокупности.

Формула средней арифметической (простой ) имеет вид

где n - численность совокупности.

Например, средняя заработная плата работников предприятия вычисляется как средняя арифметическая:

Определяющими показателями здесь являются заработная плата каждого работника и число работников предприятия. При вычислении средней общая сумма заработной платы осталась прежней, но распределенной как бы между всеми работниками поровну. К примеру, необходимо вычислить среднюю заработную плату работников небольшой фирмы, где заняты 8 человек:

При расчете средних величин отдельные значения признака, который осредняется, могут повторяться, поэтому расчет средней величины производится по сгруппированным данным. В этом случае речь идет об использовании средней арифметической взвешенной , которая имеет вид

(5.3)

Так, нам необходимо рассчитать средний курс акций какого-то акционерного общества на торгах фондовой биржи. Известно, что сделки осуществлялись в течение 5 дней (5 сделок), количество проданных акций по курсу продаж распределилось следующим образом:

1 - 800 ак. - 1010 руб.

2 - 650 ак. - 990 руб.

3 - 700 ак. - 1015 руб.

4 - 550 ак. - 900 руб.

5 - 850 ак. - 1150 руб.

Исходным соотношением для определения среднего курса стоимости акций является отношение общей суммы сделок (ОСС) к количеству проданных акций (КПА):

ОСС = 1010 ·800+990·650+1015·700+900·550+1150·850= 3 634 500;

КПА = 800+650+700+550+850=3550.

В этом случае средний курс стоимости акций был равен

Необходимо знать свойства арифметической средней, что очень важно как для ее использования, так и при ее расчете. Можно выделить три основных свойства, которые наиболее всего обусловили широкое применение арифметической средней в статистико-экономических расчетах.

Свойство первое (нулевое ): сумма положительных отклонений индивидуальных значений признака от его среднего значения равна сумме отрицательных отклонений. Это очень важное свойство, поскольку оно показывает, что любые отклонения (как с +, так и с -), вызванные случайными причинами, взаимно будут погашены.

Доказательство:

Свойство второе (минимальное ): сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа (а), т.е. есть число минимальное.

Доказательство.

Составим сумму квадратов отклонений от переменной а:

(5.4)

Чтобы найти экстремум этой функции, необходимо ее производную по а приравнять нулю:

Отсюда получаем:

(5.5)

Следовательно, экстремум суммы квадратов отклонений достигается при . Этот экстремум - минимум, так как функция не может иметь максимума.

Свойство третье : средняя арифметическая постоянной величины равна этой постоянной: при а = const.

Кроме этих трех важнейших свойств средней арифметической существуют так называемые расчетные свойства , которые постепенно теряют свою значимость в связи с использованием электронно-вычислительной техники:

  • если индивидуальное значение признака каждой единицы умножить или разделить на постоянное число, то средняя арифметическая увеличится или уменьшится во столько же раз;
  • средняя арифметическая не изменится, если вес (частоту) каждого значения признака разделить на постоянное число;
  • если индивидуальные значения признака каждой единицы уменьшить или увеличить на одну и ту же величину, то средняя арифметическая уменьшится или увеличится на ту же самую величину.

Средняя гармоническая . Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1.

Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:

К примеру, нам нужно вычислить среднюю скорость двух автомашин, прошедших один и тот же путь, но с разной скоростью: первая - со скоростью 100 км/ч, вторая - 90 км/ч. Применяя метод средней гармонической, мы вычисляем среднюю скорость:

В статистической практике чаще используется гармоническая взвешенная, формула которой имеет вид

Данная формула используется в тех случаях, когда веса (или объемы явлений) по каждому признаку не равны. В исходном соотношении для расчета средней известен числитель, но неизвестен знаменатель.

Например, при расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам не известно количество реализованных единиц (речь идет о разных товарах), но известны суммы реализаций этих различных товаров. Допустим, необходимо узнать среднюю цену реализованных товаров:

Получаем

Средняя геометрическая . Чаще всего средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000). Существуют формулы для простой и взвешенной средней геометрической.

Для простой средней геометрической

Для взвешенной средней геометрической

Средняя квадратическая величина . Основной сферой ее применения является измерение вариации признака в совокупности (расчет среднего квадратического отклонения).

Формула простой средней квадратической

Формула взвешенной средней квадратической

(5.11)

В итоге можно сказать, что от правильного выбора вида средней величины в каждом конкретном случае зависит успешное решение задач статистического исследования. Выбор средней предполагает такую последовательность:

а) установление обобщающего показателя совокупности;

б) определение для данного обобщающего показателя математического соотношения величин;

в) замена индивидуальных значений средними величинами;

г) расчет средней с помощью соответствующего уравнения.

Средние величины и вариация

Средняя величина - это обобщающий показатель, который характеризует качественно однородную совокупность по определенному количественному признаку. Например, средний возраст лиц, осужденных за кражу.

В судебной статистике средние величины используют для характеристики:

Средних сроков рассмотрения дел данной категории;

Среднего размера иска;

Среднего числа ответчиков, приходящихся на одно дело;

Среднего размера ущерба;

Средней нагрузки судей, и др.

Средняя всегда величина именованная и имеет ту же размерность, что и признак у отдельной единицы совокупности. Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному варьирующему признаку, поэтому за всякой средней скрывается ряд распределения единиц этой совокупности по изучаемому признаку. Выбор вида средней определяется содержанием показателя и исходных данных для расчета средней величины.

Все виды средних величин, используемые в статистических исследованиях, подразделяются на две категории:

1) степенные средние;

2) структурные средние.

Первая категория средних величин включает: среднюю арифметическую, среднюю гармоническую, среднюю геометрическую и среднюю квадратическую . Вторая категория - это мода и медиана . При этом каждый из перечисленных видов степенных средних величин может иметь две формы: простую и взвешенную . Простая форма средней величины используется для получения среднего значения изучаемого признака, когда расчет осуществляется по несгруппированным статистическим данным, либо когда каждая варианта в совокупности встречается только один раз. Взвешенными средними называют величины, которые учитывают, что варианты значений признака могут иметь различную численность, в связи, с чем каждый вариант приходится умножать на соответствующую частоту. Иными словами, каждый вариант «взвешивают» по своей частоте. Частоту называют статистическим весом.

Средняя арифметическая простая – самый распространенный вид средней. Она равна сумме отдельных значений признака, деленной на общее число этих значений:

,

где x 1 ,x 2 , … ,x N – индивидуальные значения варьирующего признака (варианты), а N – число единиц совокупности.

Средняя арифметическая взвешенная применяется в тех случаях, когда данные представлены в виде рядов распределения или группировок. Она вычисляется как сумма произведений вариантов на соответствующие им частоты, деленная на сумму частот всех вариантов:

где x i – значение i –й варианты признака; f i – частота i –й варианты.

Таким образом, каждое значение варианты взвешивается по своей частоте, поэтому частоты иногда называют статистическими весами.

Замечание. Когда речь идет о средней арифметической величине без указания ее вида, подразумевается средняя арифметическая простая.

Таблица 12.

Решение. Для расчета используем формулу средней арифметической взвешенной:

Таким образом, в среднем на одно уголовное дело приходится два обвиняемых.

Если вычисление средней величины производят по данным, сгруппированным в виде интервальных рядов распределения, то сначала надо определить серединные значения каждого интервала х" i , после чего рассчитать среднюю величину по формуле средней арифметической взвешенной, в которую вместо x i подставляют х" i .

Пример. Данные о возрасте преступников, осужденных за совершение кражи, представлены в таблице:

Таблица 13.

Определить средний возраст преступников, осужденных за совершение кражи.

Решение. Для того, чтобы определить средний возраст преступников на основе интервального вариационного ряда необходимо сначала найти серединные значения интервалов. Так как дан интервальный ряд с открытыми первым и последним интервалами, то величины этих интервалов принимаются равными величинам смежных закрытых интервалов. В нашем случае величина первого и последнего интервалов равны 10.

Теперь находим средний возраст преступников по формуле средней арифметической взвешенной:

Таким образом, средний возраст преступников, осужденных за совершение кражи, приближенно равен 27 лет.

Средняя гармоническая простая представляет собой величину, обратную средней арифметической из обратных значений признака:

где 1/x i – обратные значения вариантов, а N – число единиц совокупности.

Пример. Для определения средней годовой нагрузки на судей районного суда при рассмотрении уголовных дел провели обследование нагрузки 5 судей этого суда. Средние затраты времени на одно уголовное дело для каждого из обследованных судей оказались равными (в днях): 6, 0, 5, 6, 6, 3, 4, 9, 5, 4. Найти средние затраты на одно уголовное дело и среднюю годовую нагрузку на судей данного районного суда при рассмотрении уголовных дел.

Решение. Для определения средних затрат времени на одно уголовное дело, воспользуемся формулой средней гармонической простой:

Для упрощения расчетов в примере возьмем число дней в году равным 365, включая выходные (это не влияет на методику расчета, а при вычислении аналогичного показателя на практике необходимо вместо 365 дней подставить количество рабочих дней в конкретном году). Тогда средняя годовая нагрузка на судей данного районного суда при рассмотрении уголовных дел составит: 365(дней) : 5,56 ≈ 65,6 (дел).

Если бы мы для определения средних затрат времени на одно уголовное дело, воспользовались формулой средней арифметической простой, то получили бы:

365 (дней) : 5,64 ≈ 64,7 (дела), т.е. средняя нагрузка на судей оказалась меньше.

Проверим обоснованность такого подхода. Для этого воспользуемся данными о затратах времени на одно уголовное дело для каждого судьи и рассчитаем число уголовных, рассмотренных каждым из них за год.

Получим соответственно :

365(дней) : 6 ≈ 61 (дело), 365(дней) : 5,6 ≈ 65,2 (дел), 365(дней) : 6,3 ≈ 58 (дел),

365(дней) : 4,9 ≈ 74,5 (дела), 365(дней) : 5,4 ≈ 68 (дел).

Теперь вычислим среднюю годовую нагрузку на судей данного районного суда при рассмотрении уголовных дел:

Т.е. средняя годовая нагрузка такая же, как и при использовании средней гармонической.

Таким образом, использование средней арифметической в данном случае неправомерно.

В тех случаях, когда известны варианты признака, их объемные значения (произведение варианты на частоту), но неизвестны сами частоты, применяется формула средней гармонической взвешенной:

,

где x i – значения вариантов признака, а w i – объемные значения вариантов (w i = x i · f i ).

Пример. Данные о цене единицы однотипного товара, произведенного различными учреждениями уголовно-исполнительной системы, и об объемах его реализации приведены в таблице 14.

Таблица 14

Найти среднюю цену реализации товара.

Решение. При расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам неизвестно количество реализованных единиц, но известны суммы реализаций товаров. Поэтому для нахождения средней цены реализованных товаров воспользуемся формулой средней гармонической взвешенной. Получаем

Если здесь использовать формулу средней арифметической, то можно получить среднюю цену, которая будет нереальна:

Средняя геометрическая вычисляется извлечением корня степени N из произведения всех значений вариантов признака:

где x 1 ,x 2 , … ,x N – индивидуальные значения варьирующего признака (варианты), а

N – число единиц совокупности.

Этот вид средней используется для вычисления средних показателей роста рядов динамики.

Средняя квадратическая применяется для расчета среднеквадратического отклонения, являющегося показателем вариации, и будет рассмотрена ниже.

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода , или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном (упорядоченном) ряду. Упорядочение единиц статистической совокупности может быть проведено по возрастанию или убыванию вариантов изучаемого признака.

Медиана (Ме) – это величина, которая соответствует варианту, находящемуся в середине ранжированного ряда. Таким образом, медиана – это тот вариант ранжированного ряда, по обе стороны от которого в данном ряду должно находиться равное число единиц совокупности.

Для нахождения медианы сначала необходимо определить ее порядковый номер в ранжированном ряду по формуле:

где N – объем ряда (число единиц совокупности).

Если ряд состоит из нечетного числа членов, то медиана равна варианте с номером N Me . Если же ряд состоит из четного числа членов, то медиана определяется как среднее арифметическое двух смежных вариант, расположенных в середине.

Пример. Дан ранжированный ряд 1, 2, 3, 3, 6, 7, 9, 9, 10. Объем ряда N = 9, значит N Me = (9 + 1) / 2 = 5. Следовательно, Ме = 6, т.е. пятой варианте. Если дан ряд 1, 5, 7, 9, 11, 14, 15, 16, т.е. ряд с четным числом членов (N = 8), то N Me = (8 + 1) / 2 = 4,5. Значит медиана равна полусумме четвертой и пятой вариант, т.е. Ме = (9 + 11) / 2 = 10.

В дискретном вариационном ряду медиану определяют по накопленным частотам. Частоты вариант, начиная с первой, суммируются до тех пор, пока не будет превзойден номер медианы. Значение последней просуммированной варианты и будет медианой.

Пример. Найти медиану числа обвиняемых, приходящихся на одно уголовное дело, используя данные таблицы 12.

Решение. В данном случае объем вариационного ряда N = 154, следовательно, N Me = (154 + 1) / 2 = 77,5. Просуммировав частоты первой и второй варианты, получим: 75 + 43 = 118, т.е. мы превзошли номер медианы. Значит Ме = 2.

В интервальном вариационном ряду распределения сначала указывают интервал, в котором будет находиться медиана. Его называют медианным . Это первый интервал, накопленная частота которого превышает половину объема интервального вариационного ряда. Затем численное значение медианы определяется по формуле:

где x Ме – нижняя граница медианного интервала; i – величина медианного интервала; S Ме-1 – накопленная частота интервала, который предшествует медианному; f Ме – частота медианного интервала.

Пример. Найти медиану возраста преступников, осужденных за совершение кражи, на основе статистических данных, представленных в таблице 13.

Решение. Статистические данные представлены интервальным вариационным рядом, значит сначала определим медианный интервал. Объем совокупности N = 162, следовательно, медианным интервалом является интервал 18-28, т.к. это первый интервал, накопленная частота которого (15 + 90 = 105) превышает половину объема (162: 2 = 81) интервального вариационного ряда. Теперь численное значение медианы определяем по приведенной выше формуле:

Таким образом, половина осужденных за совершение кражи младше 25 лет.

Модой (Мо) называют значение признака, которое наиболее часто встречается у единиц совокупности. К моде прибегают для выявления величины признака, имеющей наибольшее распространение. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Например, для дискретного ряда, представленного в таблице 3 Мо = 1, так как этому значению варианты соответствует наибольшая частота - 75. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Его значение находят по формуле:

где x Mo – нижняя граница модального интервала; i – величина модального интервала; f Мо – частота модального интервала; f Мо-1 – частота интервала, предшествующего модальному; f Мо+1 – частота интервала, следующего за модальным.

Пример. Найтимодувозраста преступников, осужденных за совершение кражи, данные о которых представлены в таблице 13.

Решение. Наибольшая частота соответствует интервалу 18-28, следовательно, мода должна находиться в этом иртервале. Ее величину определяем по приведенной выше формуле:

Таким образом, наибольшее число преступников, осужденных за совершение кражи, имеет возраст 24 года.

Средняя величина дает обобщающую характеристику всей совокупности изучаемого явления. Однако две совокупности, имеющие одинаковые средние значения, могут значительно отличаться друг от друга по степени колеблемости (вариации) величины изучаемого признака. Например, в одном суде были назначены следующие сроки лишения свободы: 3, 3, 3, 4, 5, 5, 5, 12, 12, 15 лет, а в другом – 5, 5, 6, 6, 7, 7, 7, 8, 8, 8 лет. В обоих случаях средняя арифметическая равна 6,7 лет. Однако эти совокупности существенно различаются между собой разбросом индивидуальных значений назначенного срока лишения свободы относительно среднего значения.

И для первого суда, где этот разброс достаточно большой, средняя величина срока лишения свободы плохо отражает всю совокупность. Таким образом, если индивидуальные значения признака мало отличаются друг от друга, то средняя арифметическая будет достаточно показательной характеристикой свойств данной совокупности. В противном случае средняя арифметическая будет ненадежной характеристикой этой совокупности и применение ее на практике малоэффективно. Поэтому необходимо учитывать вариацию значений изучаемого признака.

Вариация – это различия в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Термин «вариация» имеет латинское происхождение – variatio, что означает различие, изменение, колеблемость. Она возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Для измерения вариации признака применяются различные абсолютные и относительные показатели.

К основным показателям вариации относятся следующие:

1) размах вариации;

2) среднее линейное отклонение;

3) дисперсия;

4) среднее квадратическое отклонение;

5) коэффициент вариации.

Кратко остановимся на каждом из них.

Размах вариации R самый доступный по простоте расчета абсолютный показатель, который определяется как разность между самым большим и самым малым значениями признака у единиц данной совокупности:

Размах вариации (размах колебаний) – важный показатель колеблемости признака, но он дает возможность увидеть только крайние отклонения, что ограничивает область его применения. Для более точной характеристики вариации признака на основе учета его колеблемости используются другие показатели.

Среднее линейное отклонение представляет собой среднее арифметическое из абсолютных значений отклонений индивидуальных значений признака от средней и определяется по формулам:

1) для несгруппированных данных

2) для вариационного ряда

Однако наиболее широко применяемым показателем вариации является дисперсия . Она характеризует меру разброса значений изучаемого признака относительно его среднего значения. Дисперсия определяется как средняя из отклонений, возведенных в квадрат.

Простая дисперсия для не сгруппированных данных:

.

Взвешенная дисперсия для вариационного ряда:

Замечание. На практике для вычисления дисперсии лучше использовать следующие формулы:

Для простой дисперсии

.

Для взвешенной дисперсии

Среднее квадратическое отклонение - это корень квадратный из дисперсии:

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем, однороднее совокупность и тем лучше средняя арифметическая отражает собой всю совокупность.

Рассмотренные выше меры рессеяния (размах вариации, дисперсия, среднее квадратическое отклонение) являются абсолютными показателями, судить по которым о степени колеблемости признака не всегда возможно. В некоторых задачах необходимо использовать относительные показатели рассеяния, одним из которых является коэффициент вариации.

Коэффициент вариации – выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:

Коэффициент вариации используют не только для сравнительной оценки вариации разных признаков или одного и того же признака в различных совокупностях, но и для характеристики однородности совокупности. Статистическая совокупность считается количественно однородной, если коэффициент вариации не превышает 33 % (для распределений, близких к нормальному распределению).

Пример. Имеются следующие данныео сроках лишения свободы 50 осужденных, доставленных для отбывания назначенного судом наказания в исправительное учреждение уголовно-исполнительной системы: 5, 4, 2, 1, 6, 3, 4, 3, 2, 2, 5, 6, 4, 3, 10, 5, 4, 1, 2, 3, 3, 4, 1, 6, 5, 3, 4, 3, 5, 12, 4, 3, 2, 4, 6, 4, 4, 3, 1, 5, 4, 3, 12, 6, 7, 3, 4, 5, 5, 3.

1. Построить ряд распределения по срокам лишения свободы.

2. Найти среднее значение, дисперсию и среднее квадратическое отклонение.

3. Вычислить коэффициент вариации и сделать заключение об однородности или неоднородности изучаемой совокупности.

Решение. Для построения дискретного ряда распределения необходимо определить варианты и частоты. Варианта в данной задаче – это срок лишения свободы, а частоты – численность отдельных вариант. Рассчитав частоты, получим следующий дискретный ряд распределения:

Найдем среднее значение и дисперсию. Поскольку статистические данные представлены дискретным вариационным рядом, то для их вычисления будем использовать формулы среднего арифметического взвешенного и дисперсии. Получим:

= = 4,1;

= 5,21.

Теперь вычисляем среднее квадратическое отклонение:

Находим коэффициент вариации:

Следовательно, статистическая совокупность количественно неоднородна.

Средняя арифметическая простая

Средние величины

Большое распространение в статистике имеют средние величины.

Средняя величина - это обобщающий показатель, в котором находят выражение действия общих условий, закономерностей развития изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в акционерных обществах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка отдельного продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д. Средняя выработка отражает общую характеристику всей совокупности.

Средняя величина измеряется в тех же единицах, что и сам признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные виды средних:

    средняя арифметическая;

    средняя гармоническая;

    средняя геометрическая;

    средняя квадратическая;

    средняя кубическая.

Средние всех перечисленных выше видов, в свою очередь, делятся на простые (невзвешенные) и взвешенные.

Рассмотрим виды средних, которые используются в статистике.

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х i (
); число единиц совокупности обозначают через n, среднее значение признака – через . Следовательно, средняя арифметическая простая равна:

или

Пример 1. Таблица 1

Данные о производстве рабочими продукции А за смену

В данном примере варьирующий признак - выпуск изделий за смену.

Численные значения признака (16, 17 и т. д.) называют вариантами. Определим среднюю выработку продукции рабочими данной группы:

шт.

Простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется иначе.

Средняя арифметическая взвешенная

Средняя арифметическая взвешенная равна сумме произведений каждого отдельного значения признака (варианта) на соответствующую частоту, деленной на сумму всех частот.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается через f i .

В соответствии с этим, средняя арифметическая взвешенная выглядит так:

или

Из формулы видно, что средняя зависит не только от значений признака, но и от их частот, т.е. от состава совокупности, от ее структуры.

Пример 2. Таблица 2

Данные о заработной плате рабочих

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х 1 встречается в совокупности 2 раза, а варианта х 2 - 6 раз и т.д.

Вычислим среднюю заработную плату одного рабочего:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту (
), а сумма этих произведений дает общий фонд заработной платы всех рабочих (
).

Если бы расчет был выполнен по формуле простой средней арифметической, средний заработок был бы равен 3 000 руб. (). Сравнивая полученный результат с исходными данными, очевидно, что средняя заработная плата должна быть существенно выше (больше половины рабочих получают заработную плату выше 3 000 руб.). Поэтому расчет по простой средней арифметической в таких случаях будет ошибочным.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Рассмотрим расчет средней арифметической для таких рядов.

Среднее значение это:

Среднее значение

Сре́днее значе́ние - числовая характеристика множества чисел или функций; - некоторое число, заключённое между наименьшим и наибольшим из их значений.

  • 1 Основные сведения
  • 2 Иерархия средних значений в математике
  • 3 В теории вероятностей и статистике
  • 4 См. также
  • 5 Примечания

Основные сведения

Исходным пунктом становления теории средних величин явилось исследование пропорций школой Пифагора. При этом не проводилось строгого различия между понятиями средней величины и пропорции. Значительный толчок развитию теории пропорций с арифметической точки зрения был дан греческими математиками - Никомахом Герасским (конец I - начало II в. н. э.) и Паппом Александрийским (III в. н. э.). Первым этапом развития понятия средней является этап, когда средняя стала считаться центральным членом непрерывной пропорции. Но понятие средней как центрального значения прогрессии не дает возможности вывести понятие средней по отношению к последовательности n членов, независимо от того, в каком порядке они следуют друг за другом. Для этой цели необходимо прибегнуть к формальному обобщению средних. Следующий этап - переход от непрерывных пропорций к прогрессиям - арифметической, геометрической и гармонической.

В истории статистики впервые широкое употребление средних величин связано с именем английского ученого У. Петти. У. Петти один из первых пытался придать средней величине статистический смысл, связав её с экономическими категориями. Но описания понятия средней величины, его выделения Петти не произвел. Родоначальником теории средних величин принято считать А. Кетле. Он одним из первых начал последовательно разрабатывать теорию средних величин, пытаясь подвести под неё математическую базу. А. Кетле выделял два вида средних величин - собственно средние и средние арифметические. Собственно средние представляют вещь, число, действительно существующие. Собственно средние или средние статистические должны выводиться из явлений однокачественных, одинаковых по своему внутреннему значению. Средние арифметические - числа, дающие возможно близкое представление о многих числах, различных, хотя и однородных.

Каждый из видов средней может выступать либо в форме простой, либо в форме взвешенной средней. Правильность выбора формы средней вытекает из материальной природы объекта исследования. Формулы простых средних применяются в случае, если индивидуальные значения усредняемого признака не повторяются. Когда в практических исследованиях отдельные значения изучаемого признака встречаются несколько раз у единиц исследуемой совокупности, тогда частота повторений индивидуальных значений признака присутствует в расчетных формулах степенных средних. В этом случае они называются формулами взвешенных средних.

Wikimedia Foundation. 2010.

В процессе различных расчетов и работы с данными довольно часто требуется подсчитать их среднее значение. Оно рассчитывается путем сложения чисел и деления общей суммы на их количество. Давайте выясним, как вычислить среднее значение набора чисел при помощи программы Microsoft Excel различными способами.

Самый простой и известный способ найти среднее арифметическое набора чисел — это воспользоваться специальной кнопкой на ленте Microsoft Excel. Выделяем диапазон чисел, расположенных в столбце или в строке документа. Находясь во вкладке «Главная», жмем на кнопку «Автосумма», которая расположена на ленте в блоке инструментов «Редактирование». Из выпадающее списка выбираем пункт «Среднее».

После этого, с помощью функции «СРЗНАЧ», производится расчет. В ячейку под выделенным столбцом, или справа от выделенной строки, выводится средняя арифметическая данного набора чисел.

Этот способ хорош простотой и удобством. Но, у него имеются и существенные недостатки. С помощью этого способа можно произвести подсчет среднего значения только тех чисел, которые располагаются в ряд в одном столбце, или в одной строке. А вот, с массивом ячеек, или с разрозненными ячейками на листе, с помощью этого способа работать нельзя.

Например, если выделить два столбца, и вышеописанным способом вычислить среднее арифметическое, то ответ будет дан для каждого столбца в отдельности, а не для всего массива ячеек.

Вычисление с помощью Мастера функций

Для случаев, когда нужно подсчитать среднюю арифметическую массива ячеек, или разрозненных ячеек, можно использовать Мастер функций. Он применяет все ту же функцию «СРЗНАЧ», известную нам по первому методу вычисления, но делает это несколько другим способом.

Кликаем по ячейке, где хотим, чтобы выводился результат подсчета среднего значения. Жмем на кнопку «Вставить функцию», которая размещена слева от строки формул. Либо же, набираем на клавиатуре комбинацию Shift+F3.

Запускается Мастер функций. В списке представленных функций ищем «СРЗНАЧ». Выделяем его, и жмем на кнопку «OK».

Открывается окно аргументов данной функции. В поля «Число» вводятся аргументы функции. Это могут быть как обычные числа, так и адреса ячеек, где эти числа расположены. Если вам неудобно вводить адреса ячеек вручную, то следует нажать на кнопку расположенную справа от поля ввода данных.

После этого, окно аргументов функции свернется, а вы сможете выделить ту группу ячеек на листе, которую берете для расчета. Затем, опять нажимаете на кнопку слева от поля ввода данных, чтобы вернуться в окно аргументов функции.

Если вы хотите подсчитать среднее арифметическое между числами, находящимися в разрозненных группах ячеек, то те же самые действия, о которых говорилось выше, проделывайте в поле «Число 2». И так до тех пор, пока все нужные группы ячеек не будут выделены.

После этого, жмите на кнопку «OK».

Результат расчета среднего арифметического будет выделен в ту ячейку, которую вы выделили перед запуском Мастера функций.

Панель формул

Существует ещё третий способ запустить функцию «СРЗНАЧ». Для этого, переходим во вкладку «Формулы». Выделяем ячейку, в которой будет выводиться результат. После этого, в группе инструментов «Библиотека функций» на ленте жмем на кнопку «Другие функции». Появляется список, в котором нужно последовательно перейти по пунктам «Статистические» и «СРЗНАЧ».

Затем, запускается точно такое же окно аргументов функции, как и при использовании Мастера функций, работу в котором мы подробно описали выше.

Дальнейшие действия точно такие же.

Ручной ввод функции

Но, не забывайте, что всегда при желании можно ввести функцию «СРЗНАЧ» вручную. Она будет иметь следующий шаблон: «=СРЗНАЧ(адрес_диапазона_ячеек(число); адрес_диапазона_ячеек(число)).

Конечно, этот способ не такой удобный, как предыдущие, и требует держать в голове пользователя определенные формулы, но он более гибкий.

Расчет среднего значения по условию

Кроме обычного расчета среднего значения, имеется возможность подсчета среднего значения по условию. В этом случае, в расчет будут браться только те числа из выбранного диапазона, которые соответствуют определенному условию. Например, если эти числа больше или меньше конкретно установленного значения.

Для этих целей, используется функция «СРЗНАЧЕСЛИ». Как и функцию «СРЗНАЧ», запустить её можно через Мастер функций, из панели формул, или при помощи ручного ввода в ячейку. После того, как открылось окно аргументов функции, нужно ввести её параметры. В поле «Диапазон» вводим диапазон ячеек, значения которых будут участвовать в определении среднего арифметического числа. Делаем это тем же способом, как и с функцией «СРЗНАЧ».

А вот, в поле «Условие» мы должны указать конкретное значение, числа больше или меньше которого будут участвовать в расчете. Это можно сделать при помощи знаков сравнения. Например, мы взяли выражение «>=15000». То есть, для расчета будут браться только ячейки диапазона, в которых находятся числа большие или равные 15000. При необходимости, вместо конкретного числа, тут можно указать адрес ячейки, в которой расположено соответствующее число.

Поле «Диапазон усреднения» не обязательно для заполнения. Ввод в него данных является обязательным только при использовании ячеек с текстовым содержимым.

Когда все данные введены, жмем на кнопку «OK».

После этого, в предварительно выбранную ячейку выводится результат расчета среднего арифметического числа для выбранного диапазона, за исключением ячеек, данные которых не отвечают условиям.

Как видим, в программе Microsoft Excel существует целый ряд инструментов, с помощью которых можно рассчитать среднее значение выбранного ряда чисел. Более того, существует функция, которая автоматически отбирает числа из диапазона, не соответствующие заранее установленному пользователем критерию. Это делает вычисления в приложении Microsoft Excel ещё более удобными для пользователей.

В процессе изучения математики школьники знакомятся с понятием среднего арифметического. В дальнейшем в статистике и некоторых других науках студенты сталкиваются и с вычислением других Какими они могут быть и чем отличаются друг от друга?

смысл и различия

Не всегда точные показатели дают понимание ситуации. Для того чтобы оценить ту или иную обстановку, нужно подчас анализировать огромное количество цифр. И тогда на помощь приходят средние значения. Именно они позволяют оценить ситуацию в общем и целом.

Со школьных времен многие взрослые помнят о существовании среднего арифметического. Его очень просто вычислить - сумма последовательности из n членов делится на n. То есть если нужно вычислить среднее арифметическое в последовательности значений 27, 22, 34 и 37, то необходимо решить выражение (27+22+34+37)/4, поскольку в расчетах используется 4 значения. В данном случае искомая величина будет равна 30.

Часто в рамках школьного курса изучают и среднее геометрическое. Расчет данного значения базируется на извлечении корня n-ной степени из произведения n-членов. Если брать те же числа: 27, 22, 34 и 37, то результат вычислений будет равен 29,4.

Среднее гармоническое в общеобразовательной школе обычно не является предметом изучения. Тем не менее оно используется довольно часто. Эта величина обратна среднему арифметическому и рассчитывается как частное от n - количества значений и суммы 1/a 1 +1/a 2 +...+1/a n . Если снова брать тот же для расчета, то гармоническое составит 29,6.

Средневзвешенное значение: особенности

Однако все вышеперечисленные величины могут быть использованы не везде. Например, в статистике при расчете некоторых важную роль имеет "вес" каждого числа, используемого в вычислениях. Результаты являются более показательными и корректными, поскольку учитывают больше информации. Эта группа величин носит общее название "средневзвешенное значение". Их в школе не проходят, поэтому на них стоит остановиться поподробнее.

Прежде всего, стоит рассказать, что подразумевается под "весом" того или иного значения. Проще всего объяснить это на конкретном примере. Два раза в день в больнице происходит замер температуры тела у каждого пациента. Из 100 больных в разных отделениях госпиталя у 44 будет нормальная температура - 36,6 градусов. У еще 30 будет повышенное значение - 37,2, у 14 - 38, у 7 - 38,5, у 3 - 39, и у двух оставшихся - 40. И если брать среднее арифметическое, то эта величина в общем по больнице будет составлять больше 38 градусов! А ведь почти у половины пациентов совершенно И здесь корректнее будет использовать средневзвешенное значение, а "весом" каждой величины будет количество людей. В этом случае результатом расчета будет 37,25 градусов. Разница очевидна.

В случае средневзвешенных расчетов за "вес" может быть принято количество отгрузок, число работающих в тот или иной день людей, в общем, все что угодно, что может быть измерено и повлиять на конечный результат.

Разновидности

Средневзвешенное значение соотносится со средним арифметическим, рассмотренным в начале статьи. Однако первая величина, как уже было сказано, учитывает также вес каждого числа, использованного в расчетах. Помимо этого существуют также средневзвешенное геометрическое и гармоническое значения.

Имеется еще одна интересная разновидность, используемая в рядах чисел. Речь идет о взвешенном скользящем среднем значении. Именно на его основе рассчитываются тренды. Помимо самих значений и их веса там также используется периодичность. И при вычислении среднего значения в какой-то момент времени также учитываются величины за предыдущие временные отрезки.

Расчет всех этих значений не так уж и сложен, однако на практике обычно используется только обычное средневзвешенное значение.

Способы расчета

В век повальной компьютеризации нет необходимости вычислять средневзвешенное значение вручную. Однако нелишним будет знать формулу расчета, чтобы можно было проверить и при необходимости откорректировать полученные результаты.

Проще всего будет рассмотреть вычисление на конкретном примере.

Необходимо узнать, какая же средняя оплата труда на этом предприятии с учетом количества рабочих, получающих тот или иной заработок.

Итак, расчет средневзвешенного значения производится с помощью такой формулы:

x = (a 1 *w 1 +a 2 *w 2 +...+a n *w n)/(w 1 +w 2 +...+w n)

Для примера же вычисление будет таким:

x = (32*20+33*35+34*14+40*6)/(20+35+14+6) = (640+1155+476+240)/75 = 33,48

Очевидно, что нет особых сложностей с тем, чтобы вручную рассчитать средневзвешенное значение. Формула же для вычисления этой величины в одном из самых популярных приложений с формулами - Excel - выглядит как функция СУММПРОИЗВ (ряд чисел; ряд весов)/СУММ (ряд весов).

Больше всего в эк. практике приходится употреблять среднюю арифметическую, которая может быть исчислена как средняя арифметическая простая и взвешенная.

Средняя арифметическая (СА) аиболее распространенный вид средних. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Для общест­венных явлений характерна аддитивность (суммарность) объе­мов варьирующего признака, этим определяется область при­менения СА и объясняется ее распро­страненность как обобщающего показателя, напр: общий фонд з/ п – это сумма з/п всех работников.

Чтобы исчислить СА, нужно сумму всех значений признаков разделить на их число. СА примен-ся в 2 формах.

Рассмотрим сначала простую арифметическую среднюю.

1-СА простая (исходная, определяющая форма) равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений (применяется когда имеются несгруппированные инд. значения признака):

Произведенные вычисления могут быть обобщены в следующую формулу:

(1)

где - среднее значение варьирующего признака, т. е. средняя арифметическая простая;

означает суммирование, т. е. сложение отдельных признаков;

x - отдельные значения варьирующего признака, которые называются вариантами;

n - число единиц совокупности

Пример1, требуется найти среднюю выработку одного рабочего (слесаря), если известно, сколько деталей изготовил каждый из 15 рабочих, т.е. дан ряд инд. значений признака, шт.: 21; 20; 20; 19; 21; 19; 18; 22; 19; 20; 21; 20; 18; 19; 20.

СА простая рассчитывается по формуле(1),шт.:

Пример2 . Рассчитаем СА на основании условных данных по 20 магазинам, входящим в торговую фирму (табл. 1). Таблица.1

Распределение магазинов торговой фирмы "Весна" по торговой площади, кв. М

№ магазина

№ магазина

Для вычисления средней площади магазина () необходимо сложить площади всех магазинов и полученный результат разделить на число магазинов:

Т.о., средняя площадь магазина по этой группе торговых предприятий составляет 71 кв.м.

Следовательно, чтобы определить СА простую, нужно сумму всех значений данного признака разделить на число единиц, обладающих этим признаком .

2

где f 1 , f 2 , … ,f n веса (частоты повторения одинаковых признаков);

– сумма произведений величины признаков на их частоты;

– общая численность единиц совокупности.

- СА взвешенная - с редняя из вариантов, которые повторяются различное число раз, или, как говорят, имеют различный вес. В качестве весов выступают численности единиц в разных группах совокупности (в группу объединяют одинаковые варианты). СА взвешенная средняя сгруппиро­ванных величин x 1 , x 2 , .., x n , вычисляется: (2)

Где х - варианты;

f - частота (вес).

СА взвешенная есть частное от деления суммы произведений вариантов и соответствующих им частот на сумму всех частот. Частоты (f ) фигурирующие в формуле СА, принято называть весами , вследствие чего СА, вычисленная с учетом весов, и получила название взвешенной.

Технику вычисления СА взвешенной проиллюстрируем на рассмотренном выше примере 1. Для этого сгруппируем исходные данные и поместим их в табл.

Средняя из сгруппированных данных определяется следующим образом: сначала перемножают варианты на частоты, затем складывают произведения и полученную сумму делят на сумму частот.

По формуле (2) СА взвешенная равна, шт.:

Распределение рабочих по выработке деталей

П

риведенные в предыдущем примере 2 данные можно объединить в однородные группы, которые представлены в табл.Таблица

Распределение магазинов фирмы "Весна" по торговой площади, кв. м

Т.о., результат получился тот же самый. Однако это уже будет величина средняя арифметическая взвешенная.

В предыдущем примере мы вычисляли арифметическую среднюю при условии, что известны абсолютные частоты (численность магазинов). Однако в ряде случаев абсолютные частоты отсутствуют, а известны относительные частоты, или, как принято их называть, частости, которые показывают долю или удельный вес частот во всей совокупности.

При расчетах СА взвешенной использование частот позволяет упрощать расчеты, когда частота выражена большими, многозначными числами. Расчет производится тем же способом, однако, так как средняя величина оказывается увеличенной в 100 раз, полученный результат следует разделить на 100.

Тогда формула средней арифметической взвешенной будет иметь вид:

где d – частость , т.е. доля каждой частоты в общей сумме всех частот.

(3)

В нашем примере 2 сначала определяют удельный вес магазинов по группам в общей численности магазинов фирмы "Весна". Так, для первой группы удельный вес соответствует 10%
. Получаем следующие данныеТаблица3

В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.

Задача средних величин – охарактеризовать все единицы статистической совокупности одним значением признака.

Средними величинами характеризуются качественные показатели предпринимательской деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя величина – это обобщающая характеристика единиц совокупности по какому–либо варьирующему признаку.

Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.

В анализе изучаемых явлений роль средних величин огромна. Английский экономист В. Петти (1623-1687 гг.) широко использовал средние величины. В. Петти хотел использовать средние величины в качестве меры стоимости расходов на среднее дневное пропитание одного работника. Устойчивость средней величины – это отражение закономерности изучаемых процессов. Он считал что информацию можно преобразовать, даже если нет достаточного объема исходных данных.

Применял средние и относительные величины английский ученый Г. Кинг (1648-1712) при анализе данных о населении Англии.

Теоретические разработки бельгийского статистика А. Кетле (1796-1874 гг.) основаны на противоречивости природы социальных явлений – высокоустойчивых в массе, но сугубо индивидуальных.

Согласно А. Кетле постоянные причины действуют одинаково на каждое изучаемое явление и делают эти явления похожими друг на друга, создают общие для всех них закономерности.

Следствием учения А. Кетле явилось выделение средних величин в качестве основного приема статистического анализа. Он говорил, что статистические средние величины представляют собой не категорию объективной действительности.

А. Кетле выразил взгляды на среднюю величину в своей теории среднего человека. Средний человек – это человек, обладающий всеми качествами в среднем размере (средняя смертность или рождаемость, средний рост и вес, средняя быстрота бега, средняя наклонность к браку и самоубийству, к добрым делам и т. д.). Для А. Кетле средний человек – это идеал человека. Несостоятельность теории среднего человека А. Кетле была доказана в русской статистической литературе в конце XIX-XX вв.

Известный русский статистик Ю. Э. Янсон (1835-1893 гг.) писал, что А. Кетле предполагает существование в природе типа среднего человека как чего–то данного, от которого жизнь отклонила средних людей данного общества и данного времени, а это приводит его к совершенно механическому взгляду и на законы движения социальной жизни: движение – это постепенное возрастание средних свойств человека, постепенное восстановление типа; следовательно, такое нивелирование всех проявлений жизни социального тела, за которым всякое поступательное движение прекращается.

Сущность данной теории нашла свое дальнейшее развитие в работах ряда теоретиков статистики как теория истинных величин. У А. Кетле были последователи – немецкий экономист и статистик В. Лексис (1837-1914 гг.), перенесший теорию истинных величин на экономические явления общественной жизни. Его теория известна под названием теория устойчивости. Другая разновидность идеалистической теории средних величин основана на философии

Ее основатель – английский статистик А. Боули (1869– 1957гг.) – один из самых видных теоретиков новейшего времени в области теории средних величин. Его концепция средних величин изложена в книге «Элементы статистики».

А. Боули рассматривает средние величины лишь с количественной стороны, тем самым отрывает количество от качества. Определяя значение средних величин (или «их функцию»), А. Боули выдвигает махистский принцип мышления. А. Боули писал, что функция средних величин должна выражать сложную группу

с помощью немногих простых чисел. Статистические данные должны быть упрощены, сгруппированы и приведены к средним Эти взгляды: разделяли Р. Фишер (1890-1968 гг.), Дж. Юл (1871 – 1951 гг.), Фредерик С. Миллс (1892 г) и др.

В 30-е гг. XX в. и последующие годы средняя величина рассматривается как социально значимая характеристика, информативность которой зависит от однородности данных.

Виднейшие представители итальянской школы Р. Бенини (1862-1956 гг.) и К. Джини (1884-1965 гг.), считая статистику отраслью логики, расширили область применения статистической индукции, но познавательные принципы логики и статистики они связывали с природой изучаемых явлений, следуя традициям социологической трактовки статистики.

В работах К. Маркса и В. И. Ленина средним величинам отводится особая роль.

К. Маркс утверждал, что в средней величине погашаются индивидуальные отклонения от общего уровня и средний уровень становится обобщающей характеристикой массового явления Такой характеристикой массового явления средняя величина становится лишь при условии, если взято значительное число единиц и эти единицы качественно однородны. Маркс писал, чтобы находимая средняя величина была средней «…многих различных индивидуальных величин одного и того же вида».

Средняя величина приобретает особую значимость в условиях рыночной экономики. Она помогает определить необходимое и общее, тенденцию закономерности экономического развития непосредственно через единичное и случайное.

Средние величины являются обобщающими показателями, в которых находят выражение действие общих условий, закономерность изучаемого явления.

Статистические средние величины рассчитываются на основе массовых данных статистически правильно организованного массового наблюдения. Если статистическая средняя рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений), то она будет объективной.

Средняя величина абстрактна, так как характеризует значение абстрактной единицы.

От разнообразия признака у отдельных объектов абстрагируется средняя. Абстракция – ступень научного исследования. В средней величине осуществляется диалектическое единство отдельного и общего.

Средние величины должны применяться исходя из диалектического понимания категорий индивидуального и общего, единичного и массового.

Средняя отображает что–то общее, которое складывается в определенном единичном объекте.

Для выявления закономерностей в массовых общественных процессах средняя величина имеет большое значение.

Отклонение индивидуального от общего – проявление процесса развития.

В средней величине отражается характерный, типичный, реальный уровень изучаемых явлений. Задачей средних величин является характеристика этих уровней и их изменений во времени и пространстве.

Средний показатель – это обычное значение, потому что формируется в нормальных, естественных, общих условиях существования конкретного массового явления, рассматриваемого в целом.

Объективное свойство статистического процесса или явления отражает средняя величина.

Индивидуальные значения исследуемого статистического признака у каждой единицы совокупности различны. Средняя величина индивидуальных значений одного вида – продукт необходимости, который является результатом совокупного действия всех единиц совокупности, проявляющийся в массе повторяющихся случайностей.

Одни индивидуальные явления имеют признаки, которые существуют во всех явлениях, но в разных количествах – это рост или возраст человека. Другие признаки индивидуального явления, качественно различные в различных явлениях, т. е. имеются у одних и не наблюдаются у других (мужчина не станет женщиной). Средняя величина вычисляется для признаков качественно однородных и различных только количественно, которые присущи всем явлениям в данной совокупности.

Средняя величина является отражением значений изучаемого признака и измеряется в той же размерности, что и этот признак.

Теория диалектического материализма учит, что все в мире меняется, развивается. А также изменяются признаки, которые характеризуются средними величинами, а соответственно – и сами средние.

В жизни происходит непрерывный процесс создания чего–то нового. Носителем нового качества являются единичные объекты, далее количество этих объектов возрастает, и новое становится массовым, типичным.

Средняя величина характеризует изучаемую совокупность только по одному признаку. Для полного и всестороннего представления изучаемой совокупности по ряду определенных признаков необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

2. Виды средних величин

В статистической обработке материала возникают различные задачи, которые необходимо решать, и поэтому в статистической практике используются различные средние величины. Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.

Для того чтобы применить одну из вышеперечисленных видов средней, необходимо проанализировать изучаемую совокупность, определить материальное содержание изучаемого явления, все это делается на основе выводов, полученных из принципа осмысленности результатов при взвешивании или суммировании.

В изучении средних величин применяются следующие показатели и обозначения.

Признак, по которому находится средняя, называется осредняемым признаком и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением, или вариантами, и обозначают как x 1 , х 2 , x 3 ,… х п ; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.

Средняя арифметическая

Один из наиболее распространенных видов средней – средняя арифметическая, которая исчисляется тогда, когда объем ос–редняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.


Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.

Формула средней арифметической взвешенной выглядит следующим образом:


гдех i – варианты,

f i – частоты или веса.

Взвешенная средняя величина должна употребляться во всех случаях, когда варианты имеют различную численность.

Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующуюся у каждого из них.

Вычисление средних величин производят по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до).

Свойства средней арифметической:

1) средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин: Если х i = y i +z i , то


Данное свойство показывает в каких случаях можно суммировать средние величины.

2) алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону:


Это правило демонстрирует, что средняя является равнодействующей.

3) если все варианты ряда увеличить или уменьшить на одно и тоже число?, то средняя увеличится или уменьшится на это же число?:


4) если все варианты ряда увеличить или уменьшить в А раз, то средняя также увеличится или уменьшится в А раз:


5) пятое свойство средней показывает нам, что она не зависит от размеров весов, но зависит от соотношения между ними. В качестве весов могут быть взяты не только относительные, но и абсолютные величины.

Если все частоты ряда разделить или умножить на одно и тоже число d, то средняя не изменится.


Средняя гармоническая. Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов и частот, т. е. значения х и f.

Допустим, известны индивидуальные значения признака х и произведения х/, а частоты f неизвестны, тогда, чтобы рассчитать среднюю, обозначим произведение = х/; откуда:



Средняя в этой форме называется средней гармонической взвешенной и обозначается х гарм. взв.

Соответственно, средняя гармоническая тождественна средней арифметической. Она применима, когда неизвестны действительные веса f , а известно произведение = z

Когда произведения одинаковы или равны единицы (m = 1) применяется средняя гармоническая простая, вычисляемая по формуле:


где х – отдельные варианты;

n – число.

Средняя геометрическая

Если имеется n коэффициентов роста, то формула среднего коэффициента:


Это формула средней геометрической.

Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.

Если осреднению подлежат величины, выраженные в виде квадратных функций, применяется средняя квадратическая. Например, с помощью средней квадратической можно определить диаметры труб, колес и т. д.

Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число.


Средняя квадратическая взвешенная равна:

3. Структурные средние величины. Мода и медиана

Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.

Мода (М о ) – чаще всего встречающийся вариант. Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.

Мода представляет наиболее часто встречающееся или типичное значение.

Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен.

В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту (частность).

В пределах интервала надо найти то значение признака, которое является модой.


где х о – нижняя граница модального интервала;

h – величина модального интервала;

f m – частота модального интервала;

f т -1 – частота интервала, предшествующего модальному;

f m +1 – частота интервала, следующего за модальным.

Мода зависит от величины групп, от точного положения границ групп.

Мода – число, которое в действительности встречается чаще всего (является величиной определенной), в практике имеет самое широкое применение (наиболее часто встречающийся тип покупателя).

Медиана (M e – это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.

Медиана – это элемент, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения.

Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.

Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних.

Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал:


где х ме – нижняя граница медианного интервала;

i Me – величина медианного интервала;

f/2 – полусумма частот ряда;

S Me -1 – сумма накопленных частот, предшествующих медианному интервалу;

f Me – частота медианного интервала.

Медиана делит численность ряда пополам, следовательно, она там, где накопленная частота составляет половину или больше половины всей суммы частот, а предыдущая (накопленная) частота меньше половины численности совокупности.