Требования к газовому составу воздуха. Химический состав атмосферы Земли. Состав атмосферы Земли в процентах

Химический состав воздуха имеет важное гигиеническое значение, так как он играет решающую роль в осуществлении дыхательной функции организма. Атмосферный воздух представляет собой смесь кислорода, углекислого газа, аргона и других газов в соотношениях, приведенных в табл. 1.

Кислород (О2) - наиболее важная для человека составная часть воздуха. В состоянии покоя человек обычно поглощает в среднем 0,3 л кислорода в 1 мин.

При физической деятельности потребление кислорода резко возрастает и может достигнуть 4,5/5 л и более в 1 мин. Колебания содержания кислорода в атмосферном воздухе невелики и не превышают, как правило, 0,5 %.

В жилых, общественных и спортивных помещениях значительных изменений в содержании кислорода не наблюдается, так как в них проникает наружный воздух. При самых неблагоприятных гигиенических условиях в помещении отмечалось уменьшение содержания кислорода на 1 %. Такие колебания не оказывают заметного влияния на организм.

Обычно физиологические сдвиги наблюдаются при снижении содержания кислорода до 16-17 %. Если его содержание уменьшается до 11 -13% (при подъеме на высоту), появляются ярко выраженная кислородная недостаточность, резкое ухудшение самочувствия и снижение работоспособности. Содержание кислорода до 7-8 % может привести к смертельному исходу.

В спортивной практике в целях повышения работоспособности и интенсивности восстановительных процессов используется вдыхание кислорода.

Углекислый газ (СО2), или двуокись углерода,- бесцветный газ без запаха, образующийся при дыхании людей и животных, гниении и разложении органических веществ, сгорании топлива и др. В атмосферном воздухе вне населенных пунктов содержание углекислого газа составляет в среднем 0,04 %, а в промышленных центрах его концентрация повышается до 0,05-0,06 %. В жилых иобщественных зданиях при нахождении в них большого количества людей содержание углекислого газа может увеличиваться до 0,6-0,8 %. При наихудших гигиенических условиях в помещении (большое скопление людей, плохая вентиляция и др.) его концентрация обычно не превышает 1 % из-за проникновения наружного воздуха. Такие концентрации не вызывают отрицательных явлений в организме.

При продолжительном вдыхании воздуха с содержанием 1 - 1,5% углекислого газа отмечается ухудшение самочувствия, а при 2-2,5 % обнаруживаются патологические сдвиги. Значительные нарушения функций организма и снижение работоспособности происходят, когда содержание углекислого газа составляет 4-5 %. При содержании 8-10 % происходит потеря сознания и смерть. Значительное повышение содержания углекислого газа в воздухе может возникнуть при аварийных ситуациях в замкнутых пространствах (шахтах, рудниках, подводных лодках, бомбоубежищах идр.) или в тех местах, где происходит интенсивное разложение органических веществ.

Определение содержания углекислого газа в жилых, общественных и спортивных сооружениях может служить косвенным показателем загрязнения воздуха продуктами жизнедеятельности людей. Как уже отмечалось, сам по себе углекислый газ в этих случаях не причиняет вреда организму, однако вместе с увеличением его содержания наблюдается ухудшение физических и химических свойств воздуха (повышается температура и влажность, нарушается, ионный состав, появляются дурно пахнущие газы). Воздух в помещениях считается недоброкачественным, если содержание углекислого газа в нем превышает 0,1 %. Эта величина принимается как расчетная при проектировании и устройстве вентиляции в помещениях.

Предыдущая глава::: К содержанию::: Следующая глава

Химический состав воздуха имеет важное значение в осуществлении дыхательной функции. Атмосферный воздух – это смесь газов: кислорода, углекислого газа, аргона, азота, неона, криптона, ксенона, водорода, озона и др. Кислород – наиболее важен. В покое человек поглощает 0,3 л/мин. При физической деятельности потребление кислорода возрастает и может достигать 4,5 –8 л/мин Колебания содержания кислорода в атмосфере невелики и не превышают 0.5%. Если содержание кислорода уменьшается до 11-13%, появляются явления кислородной недостаточности.

Содержание кислорода 7-8% могут привести к смерти. Углекислый газ – без цвета и запаха, образуется при дыхании и гниении, сгорании топлива. В атмосфере составляет 0,04%, а в промзонах – 0,05-0.06%. При большом скоплении людей может увеличиваться до 0,6 – 0,8%. При продолжительном вдыхании воздуха с содержанием 1-1,5% углекислого газа отмечается ухудшение самочувствия, а при 2-2,5% — патологические сдвиги. При 8-10% потеря сознания и смерть, воздух имеет давление, называемое атмосферным или барометрическим. Оно измеряется в миллиметрах ртутного столба (мм.рт.ст.), гектопаскалях (гПа), миллибарах (мб). Нормальным принято считать давление атмосферы на уровне моря на широте 45˚ при температуре воздуха 0 ˚С. Оно равно 760 мм.рт.ст. (Воздух в помещении считается недоброкачественным, если он содержит 1% углекислого газа. Эта величина принимается как расчетная при проектировании и устройстве вентиляции в помещениях.

Загрязнения воздуха. Окись углерода – газ без цвета и запаха, образуется при неполном сгорании топлива и поступает в атмосферу с промвыбросами и выхлопными газами двигателей внутреннего сгорания. В мегаполисах его концентрация может доходить до 50-200мг/м3. При курении табака окись углерода попадает в организм. Окись углерода — кровяной и общетоксический яд. Она блокирует гемоглобин, он теряет способность переносить кислород к тканям. Острое отравление происходит при концентрации окиси углерода в воздухе в 200-500 мг/м3. При этом наблюдается головная боль, общая слабость, тошнота, рвота. Предельно допустимая концентрация среднесуточная 0 1 мг/м3, разовая – 6 мг/м3. Воздух могут загрязнять сернистый газ, сажа, смолистые вещества, окислы азота, сероуглерод.

Микроорганизмы. В небольших количествах всегда находятся в воздухе, куда они заносятся с почвенной пылью. Попадающие в атмосферу микробы инфекционных заболеваний быстро погибают. Особую опасность в эпидотношении представляет воздух жилых помещений и спортсооружений. Например, в борцовских залах наблюдается содержание микробов до 26000 в 1м3 воздуха. Аэрогенные инфекции в таком воздухе очень быстро распространяются.

Пыль представляет собой легкие плотные частицы минерального или органического происхождения, попадая в легкие пыль, там задерживается и вызывает различные заболевания. Производственная пыль (свинцовая, хромовая) может вызвать отравления. В городах пыль не должна превышать 0,15 мг/м3.Спортплощадки необходимо регулярно поливать, иметь зеленую зону, проводить влажную уборку. Для всех предприятий, загрязняющих атмосферу, установлены санитарно-защитные зоны. В соответствии с классом вредности они имеют разные размеры: для предприятий 1 класса – 1000 м, 2 – 500 м, 3 – 300 м, 4 –100 м, 5 – 50 м. При размещении спортсооружений вблизи предприятий необходимо учитывать розу ветров, санитарно-защитные зоны, степень загазованности воздуха и др.

Одним из важных мероприятий по охране воздушной среды являются предупредительный и текущий санитарный надзор и систематический контроль состояния атмосферного воздуха. Он производится с помощью автоматизированной системы мониторинга.

Чистый атмосферный воздух у поверхности Земли имеет следующий химический состав: кислород – 20,93%, углекислый газ – 0,03-0,04%,азот – 78,1%, аргон, гелий, криптон 1%.

В выдыхаемом воздухе кислорода на 25% меньше, а углекислого газа – в 100 раз больше.
Кислород. Важнейшая составная часть воздуха. Он обеспечивает течение окислительно-восстановительных процессов в организме. Взрослый человек в покое потребляет 12 л кислорода, при физической работе в 10 раз больше. В крови кислород находится в связи с гемоглобином.

Озон. Химически неустойчивый газ, способен поглощать солнечную коротковолновую ультрафиолетовую радиацию, губительно действующую на все живое. Озон поглощает длинноволновую инфракрасную радиацию, исходящую от Земли, и тем самым препятствует ее чрезмерному охлаждению (озоновый слой Земли). Под воздействием УФО озон разлагается на молекулу и атом кислорода. Озон – бактерицидное средство при обеззараживании воды. В природе он образуется при электрических разрядах, в процессе испарения воды, при УФО, во время грозы, в горах и в хвойных лесах.

Углекислый газ. Образуется в результате окислительно-восстановительных процессов, протекающих в организме людей и животных, горения топлива, гниения органических веществ. В воздухе городов концентрация углекислого газа увеличена за счет промышленных выбросов – до 0,045%, в жилых помещениях – до 0,6-0,85. Взрослый человек в покое выделяет 22 л углекислоты в час, а при физической работе – в 2-3 раза больше. Признаки ухудшения самочувствия у человека появляются только при продолжительном вдыхании воздуха, содержащего 1-1,5% углекислого газа, выраженные функциональные изменения – при концентрации 2-2,5% и резко выраженные симптомы (головная боль, общая слабость, одышка, сердцебиение, понижение работоспособности) – при 3-4%. Гигиеническое значение углекислого газа заключается в том, что он служит косвенным показателем общего загрязнения воздуха. Норма углекислого газа в спортзалах – 0,1%.

Азот. Индифферентный газ, служит разбавителем других газов. Повышенное вдыхание азота может оказать наркотическое действие.

Окись углерода. Образуется при неполном сгорании органических веществ. Не обладает ни цветом, ни запахом. Концентрация в атмосфере зависит от интенсивности автомобильного движения. Проникая через легочные альвеолы в кровь, она образует карбооксигемоглобин, в результате гемоглобин теряет способность переносить кислород. Предельно допустимая среднесуточная концентрация окиси углерода составляет 1мг/м3. Токсические дозы окиси углерода в воздухе составляют 0,25-0,5 мг/л. При длительном воздействии головная боль, обморок, сердцебиение.

Сернистый газ. Он поступает в атмосферу в результате сжигания топлива, богатого серой (каменный уголь). Образуется при обжиге и плавлении сернистых руд, при крашении тканей. Он раздражает слизистые глаз и ВДП. Порог ощущения 0,002-0,003мг/л. Газ вредно действует на растительность, особенно хвойные породы деревьев.
Механические примеси воздуха поступают в виде дыма, копоти, сажи, измельченных частиц почвы и других твердых веществ. Запыленность воздуха зависит от характера почвы (песок, глина, асфальт), ее санитарного состояния (полив, уборка), от загрязнения атмосферы промышленными выбросами, санитарного состояния помещений.

Пыль механически раздражает слизистые оболочки ВДП и глаз. Систематическое вдыхание пыли вызывает заболевания органов дыхания. При дыхании через нос задерживается до 40-50% пыли. Микроскопическая пыль, долго находящаяся во взвешенном состоянии наиболее неблагоприятна в гигиеническом отношении. Электрозаряженность пыли усиливает ее способность проникать в легкие и задерживаться в них. Пыль. содержащая свинец, мышьяк, хром и др. ядовитые вещества, вызывает типичные явления отравления, причем при проникновении не только при вдыхании, но и через кожу и ЖКТр. В запыленном воздухе значительно уменьшается интенсивность солнечной радиации и ионизация воздуха. Для профилактики неблагоприятного воздействия пыли на организм жилые дома располагают к загрязнителям воздуха с наветренной стороны. Между ними устраиваются санитарно- защитные зоны шириной 50-1000 м и более. В жилых помещениях систематическая влажная уборка, проветривание помещений, смена обуви и верхней одежды, на открытых площадках использование не пылящих грунтов и полив.

Микроорганизмы воздуха. Бактериальное загрязнение воздуха, как и других объектов внешней среды (вода, почва), представляет опасность в эпидемиологическом плане. В воздухе находятся различные микроорганизмы: бактерии, вирусы, плесневые грибки, дрожжевые клетки. Самым распространенным является воздушно-капельный способ передачи инфекций: в воздух поступает большое количество микробов, при дыхании попадающих в дыхательные пути здоровых людей. Например, при громком разговоре, а тем боле при кашле и чихании мельчайшие капельки разбрызгиваются на расстояние 1-1,5 м и с воздухом распространяются на 8-9 м. Эти капельки могут находиться во взвешенном состоянии 4-5 часов, но в большинстве случаев оседают через 40-60 минут. В пыли вирус гриппа и дифтерийные палочки сохраняют жизнеспособность 120-150 дней. Существует известная взаимосвязь: чем больше пыли в воздухе помещений, тем обильнее в нем содержание микрофлоры.

Химический состав воздуха

Воздух представляет собой смесь газов, образующих вокруг Земли защитный слой - атмосферу. Воздух необходим всем живым организмам: животным для дыхания, а растениям - для питания. К тому же воздух защищает Землю от губительного ультрафиолетового излучения Солнца. Основные составляющие воздуха - азот и кислород. В воздухе есть также небольшие примеси благородных газов, углекислого газа и некоторое количество твердых частиц - копоти, пыли. Воздух нужен всем животным для дыхания. Около 21% воздуха составляет кислород. Молекула кислорода (О2) состоит из двух связанных атомов кислорода.

Состав воздуха

Процентное соотношение различных га-зов в воздухе слегка изменяется в зависимости от места, времени года и суток. Азот и кислород - основные компоненты воздуха. Один процент воздуха составляют благородные газы, углекислой газ, водяной пар и загрязнения, например диоксид азота. Входящие в состав воздуха газы можно разделить путем фракционной перегонки . Воздух охлаждается до тех пор, пока газы не перейдут в жидкое состояние (см. статью «Твёрдые тела, жидкости и газы«). Пос-ле этого жидкая смесь нагревается. Температура кипения у каждой жидкости своя, и образующиеся при кипении газы можно собирать от-дельно. Кислород, азот и углекислый газ постоянно по-падают из воздуха в живые организмы и возвращают-ся в воздух, т.е. происходит круговорот. Животные вдыхают кислород воздуха и выдыхают углекислый газ.

Кислород

Кислород необходим для жизни. Животные дышат им, с его помощью усваивают пищу и получают энергию. Днем в растениях происходит процесс фотосинтеза , и растения выделяют кислород. Кислород также необходим для сгорания; без кислорода ничто не может гореть. Почти 50% соединений в земной коре и Мировом океане содержат кислород. Обычный песок - это соединение кремния с кислородом. Кислород используют в дыхательных аппаратах водолазов и в больницах. Кислород также используется при производстве стали (см. статью «Железо, сталь и прочие материалы») и ракетной технике (см. статью «Ракеты и космические аппараты»).

В верхних слоях атмосферы атомы кислорода соединяются по три, образуя молекулу озона (О3). Озон - это аллотропная модификация кислорода. Озон - ядовитый газ, но в атмосфере озоновый слой защищает нашу планету, поглощая большую часть вредного ультрафиолетового излучения Солнца (подробнее в статье «Воздействие Солнца на Землю»).

Азот

Более 78% воздуха составляет азот. Бел-ки, из которых построены живые организ-мы, также содержат азот. Главное промышленное применение азота - производство аммиака , необходимого для удобрений. Азот для этого соединяют с водородом. Азот накачивается в упаковки для мяса или рыбы, т.к. при контакте с обычным воздухом продукты окисляются и портятся Предназначенные для пересадки человеческие органы хранятся в жидком азоте, потому что он холодный и химически инертный. Молекула азота (N2) состоит из двух связанных атомов азота.

Растения получают азот из почвы в виде нитратов и используют его дня синтеза белков. Животные поедают растения, и азотные соединения возвращаются в почву с выделениями животных, а также при разложении их мертвых тел. В почве азотные соединения разлагаются бактериями с выделением аммиака, а потом и свободного азота. Другие бактерии поглощают азот из воздуха и превращают в нитраты усваиваемые растениями.

Углекислый газ

Углекислый газ - это соединение углерода и кислорода. В воздухе содержится около 0,003% углекислого газа. Молекула углекислого газа (СО2) состоит из двух атомов кислорода и одного атома углерода. Углекислый газ - один из элементов круговорота углерода. Растения поглощают его при фотосинтезе,а животные выдыхают его. Углекислый газ образуется также при сгорании веществ, содержащих углерод, например древесины или бензина. Поскольку наши машины и заводы сжигают очень много топлива, доля углекислого газа в атмосфере растет. Большинство веществ не могут гореть в угле-кислом газе, поэтому он применяется в огнетушителях. Углекислый газ плотнее воздуха. Он «душит» пламя, перекрывая доступ кислорода. Углекислый газ слегка растворяется в воде, образуя при этом слабый раствор угольной кислоты. Твердая углекис-лота называется сухим льдом. При таянии сухой лед превращается в газ; он применяется для создания искусственных облаков в театре.

Загрязнение воздуха

Копоть и ядовитые газы - угарный газ, диоксид азота, диоксид серы - загрязняют атмосферу. Угарный газ образуется при го-рении. Многие вещества сгорают так быстро, что не успевают присоединить доста-точно кислорода и вместо углекислого газа (СО2) образует-ся угарный газ (СО). Угарный газ очень ядовит; он мешает крови животных переносить кислород. В молекуле угарного газа только один атом кислорода. Выхлопные газы автомобилей содержат угарный газ, а также диоксид азота, вызывающий кислотные дожди. Диоксид серы выделяется при сгорании ископаемого топлива, в особенности угля. Он ядовит и затрудняет дыхание. К тому же он растворяется в воде и служит причиной кислотных дождей. Частицы пыли и ко-поти, выбрасываемые в атмосферу предприятиями, также загрязняют воз-дух; мы вдыхаем их, они оседа-ют на растениях. В бензин для лучшего сгорания добавляют свинец (правда, сей-час многие автомобили работают на бензине без свинца). Свинцовые соединения накапливаются в организме и пагубно влияют на нервную систему. У детей они могут вызвать мозговые нарушения.

Кислотные дожди

В дождевой воде всегда содержится чуть-чуть кислоты из-за растворенного угле-кислого газа, но загрязняющие вещества (диоксиды серы и азота) повы-шают кислотность дождя. Кислотные дожди вызывают коррозию металлов, разъедают каменные сооружения и повы-шают кислотность пресной воды.

Благородные газы

Благородные газы - это 6 элементов 8-й группы периодической таблицы. Они чрезвычайно инертны химически. Только они существуют в виде от-дельных атомов, не образующих молекулы. Из-за их пассивности некоторыми из них наполняют лампы. Ксенон практически не используется человеком, зато аргон накачивают в электролампочки, а крип-тоном наполняют люминесцентные лампы. Неон вспыхивает красно-оранжевым светом при прохождении электрического разряда. Он используется в натриевых уличных лампах и неоновых лампах. Радон радиоактивен. Он образуется в результате распада металла радия. Никакие соединения гелия науке неизвестны, и гелий считается абсолютно инертным. Его плотность в 7 раз меньше плотности воздуха, поэтому им наполняют дирижабли. Наполненные гелием воздушные шары оснащаются научной аппаратурой и запускаются в верхние слои атмосферы.

Парниковый эффект

Так называется наблюдающееся сейчас повышение содержания углекислого газа в атмосфере и вызванное этим глобальное потепление , т.е. повышение среднегодовых температур во всем мире. Углекислый газ не дает теплу покидать Землю, так же как стекло сохраняет высокую температуру внутри парника. Поскольку углекислого газа в воздухе становится все больше, все больше тепла задерживается в атмосфере. Даже небольшое потепление вызывает повышение уровня Мирового океана, перемену ветров и таяние части льда у полюсов. Ученые считают, что если содержание углекислого газа будет расти так же быстро, то за 50 лет средняя темпера-тура может возрасти на величину от 1,5°С до 4°С.

воздух — это смесь газов, и значит элементов. . Азот, кислород, углекислый газ. В городах и прочие газы…

Процентным соотношением газов.

нужно графическое изображение молекулы воздуха?

Воздух в химии-NO2

зит хайн. аллах акбар. такбир. иностранные слова которые запрещено говорить. к чему это — ХЗ

Если вы думаете, что воздух имеет свою отдельную формулу — вы ошибаетесь, в химиии он никак не обознанчается.

Воздух — естественная смесь газов, главным образом азота и кислорода, составляющая земную атмосферу. Состав воздуха: Азот N2 Кислород O2 Аргон Ar Углекислый газ CO2 Неон Ne Метан CH4 Гелий He Криптон Kr Водород H2 Ксенон Xe Вода H2O Кроме того воздух всегда содержит пары воды. Так, при температуре 0 °C 1 м³ воздуха может вмещать максимально 5 граммов воды, а при температуре +10 °C - уже 10 граммов. В алхимии воздух обозначают в виде треугольника с горизонтальной чертой.

азот

основной компонент вдыхаем. воздуха

Альтернативные описания

Газ, делающий металл хрупким

Газ, из которого на 78% состоит воздух

Главный «воздушный наполнитель»

Главный компонент вдыхаемого вами воздуха, которым в чистом виде дышать нельзя

Компонент воздуха

Удобрение, витающее в воздухе

Химический элемент - основа ряда удобрений

Химический элемент, один из основных питательных веществ растений

Химический элемент, составная часть воздуха

Нитрогениум

Жидкий хладагент

Химический элемент, газ

Магический меч Парацельса

На латыни этот газ называется «nitrogenium», то есть «рождающий селитру»

Название этого газа произошло от латинского слова «безжизненный»

Этот газ - составляющая воздуха практически отсутствовал в первичной атмосфере Земли 4,5 млрд. лет назад

Газ, чья жидкость служит для охлаждения сверхточных приборов

Какой газ в жидком состоянии хранят в сосуде Дьюара?

Газ, заморозивший Терминатора II

Газ-охладитель

Какой газ тушит огонь?

Самый распространенный элемент в атмосфере

Основа всех нитратов

Химический элемент, N

Замораживающий газ

Воздух на три четверти

В составе аммиака

Газ из воздуха

Газ под номером 7

Элемент из селитры

Основной газ в воздухе

Популярнейший газ

Элемент из нитратов

Жидкий газ из сосуда

Газ №1 в атмосфере

Удобрение в воздухе

78% воздуха

Газ для криостата

Почти 80% воздуха

Самый популярный газ

Распространенный газ

Газ из сосуда Дьюара

Главный компонент воздуха

. «N» в воздухе

Нитроген

Воздушный компонент

Древний богатый филистимский город, с храмом Дагона

Большая часть атмосферы

Преобладает в воздухе

Следом за углеродом в таблице

Между углеродом и кислородом в таблице

7-й у Менделеева

Перед кислородом

Предшественник кислорода в таблице

Газ, отвечающий за урожай

. «безжизненный» среди газов

Вслед за углеродом в таблице

Пес из палиндрома Фета

Газ - компонент удобрений

До кислорода в таблице

После углерода в таблице

78,09% воздуха

Какого газа больше в атмосфере?

Какой газ витает в воздухе?

Газ, занимающий большую часть атмосферы

Седьмой в строю химических элементов

элемент №7

Составная часть воздуха

В таблице он после углерода

Нежизненная часть атмосферы

. «рождающий селитру»

Закись этого газа - «вселящий газ»

Основа земной атмосферы

Большая часть воздуха

Часть воздуха

Преемник углерода в таблице

Безжизненная часть воздуха

Седьмой в менделеевском строю

Газ в составе воздуха

Основная масса воздуха

Седьмой химический элемент

Около 80% воздуха

Газ из таблицы

Газ, существено влияющий на урожай

Главный компонент нитратов

Основа воздуха

Главный элемент воздуха

. «нежизненный» элемент воздуха

Менделеев назначил его седьмым

Львиная доля воздуха

Седьмой в менделеевской шеренге

Главный газ в воздухе

Седьмой в химическом строю

Основной газ воздуха

Главный газ воздуха

Между углеродом и кислородом

Инертный при нормальных условиях двухатомный газ

Самый распространенный на Земле газ

Газ, основной компонент воздуха

Химический элемент, газ без цвета и запаха, главная составная часть воздуха, входящий также в состав белков и нуклеиновых кислот

Наименование химического элемента

. "N" в воздухе

. "Безжизненный" среди газов

. "Нежизненный" элемент воздуха

. "Рождающий селитру"

7-я графа Менделеева

Большая часть вдыхаемого воздуха

Входит в состав воздуха

Газ — компонент удобрений

Газ, существенно влияющий на урожай

Главная состав. часть воздуха

Главная часть воздуха

Главный "воздушный наполнитель"

Закись этого газа — "вселящий газ"

Какого газа больше в атмосфере

Какой газ в жидком состоянии хранят в сосуде Дьюара

Какой газ витает в воздухе

Какой газ тушит огонь

М. химич. основание, главная стихия селитры; селитротвор, селитрород, селитряк; он же главная, по количеству, составная часть нашего воздуха (азота объемов, кислорода Азотистый, азотный, азотовый, азот в себе содержащий. Химики различают этими словами меру или степени содержания азота в сочетаниях его с другими веществами

На латыни этот газ называется "nitrogenium", то есть "рождающий селитру"

Название этого газа произошло от латинского слова "безжизненный"

Перед кислородом в таблице

Последыш углерода в таблице

Седьмая графа Менделеева

Химическ. элемент с кодовым именем 7

Химический элемент

Что за химический элемент №7

Входит в состав селитры

Природный химический состав атмосферного воздуха

По химическому составу чистый атмосферный воздух представляет собой смесь газов: кислорода, углекислого газа, азота, а также целого ряда инертных газов (аргон, гелий, криптон и др.). Так как воздух является физической смесью, а не химическим соединением составляющих его газов, то при подъеме даже на десятки километров, процентное содержание этих газов практически не меняется.

Однако с высотой, в результате уменьшения плотности атмосферы, снижаются концентрации и парциальное давление всех газов в воздухе.

У поверхности Земли в атмосферном воздухе содержится:

кислорода – 20,93%;

азота – 78,1%;

углекислого газа – 0,03-0,04%;

инертных газов – от 10-3 до 10-6 %.

Кислород (О2) – самая важная для жизни часть воздуха. Он необходим для окислительных процессов и находится в крови, в основном, в связанном состоянии – в виде оксигемоглобина, который переносится эритроцитами к клеткам организма.

Переход кислорода из альвеолярного воздуха в кровь происходит благодаря разности парциального давления в альвеолярном воздухе и венозной крови. В силу этой же причины осуществляется поступление кислорода из артериальной крови в межтканевую жидкость, и далее – в клетки.

В природе кислород расходуется, в основном, на окисление органических веществ, содержащихся в воздухе, воде, почве и на процессы горения. Убыль кислорода пополняется за счет больших его запасов в атмосфере, а также в результате деятельности фитопланктона океанов и наземных растений. Непрерывные турбулентные течения воздушных масс выравнивают содержание кислорода в приземном слое атмосферы. Поэтому уровень кислорода у поверхности Земли колеблется незначительно: от 20,7 до 20,95%. В жилых помещениях, общественных зданиях содержание кислорода также практически не меняется благодаря легкой диффузии его через поры строительных материалов, щели в окнах и т.п.

В герметизированных же помещениях (убежища, подводные лодки и др.) содержание кислорода может значительно уменьшатся. Однако выраженное ухудшение самочувствия, снижение работоспособности у людей наблюдаются при очень значительном падении содержания кислорода – до 15-17% (при норме – почти 21%). Следует подчеркнуть, что в данном случае речь идет о пониженном содержании кислорода при нормальном атмосферном давлении.

При возрастании температуры воздуха до 35-40оС и большой влажности снижается парциальное давление кислорода, что может оказать негативное влияние на больных с явлениями гипоксии.

У здоровых людей кислородное голодание из-за снижения парциального давления кислорода может наблюдаться при полетах (высотная болезнь) и при восхождении на горы (горная болезнь, начинающаяся на высоте около 3 км).

Высоты в 7-8 км соответствуют 8,5-7,5% кислорода в воздухе на уровне моря и для нетренированных людей считаются несовместимыми с жизнью без использования кислородных приборов.

Дозированное увеличение парциального давления кислорода в воздухе в барокамерах используется в хирургии, терапии и неотложной помощи.

Кислород в чистом виде обладает токсическим действием. Так, в экспериментах на животных показано, что при дыхании чистым кислородом у животных через 1-2 часа обнаруживаются ателектазы в легких, через 3-6 часов – нарушение проницаемости капилляров в легких, через 24 часа – явления отека легких.

Еще быстрее развивается гипероксия в кислородной среде с повышенным давлением – наблюдается как поражение легочной ткани, так и поражение центральной нервной системы.

Углекислый газ или диоксид углерода, в природе находится в свободном и связанном состояниях. До 70% углекислого газа растворено в воде морей и океанов, в состав некоторых минеральных соединений (известняков и доломитов) входит около 22% общего количества диоксида углерода. Остальное количество приходится на животный и растительный мир. В природе происходят непрерывные процессы выделения и поглощения диоксида углерода. В атмосферу он выделяется в результате дыхания человека и животных, а также горения, гниения, брожения. Кроме того, диоксид углерода образуется при промышленном обжиге известняков и доломитов, возможно его выделение с вулканическими газами. Наряду с процессами образования в природе идут процессы ассимиляции диоксида углерода – активное поглощение растениями в процессе фотосинтеза. Из воздуха диоксид углерода вымывается осадками.

Важную роль в поддержании постоянной концентрации диоксида углерода в атмосферном воздухе играет его выделение с поверхности морей и океанов. Диоксид углерода, растворенный в воде морей и океанов, находится в динамическом равновесии с диоксидом углерода воздуха и при повышении парциального давления в воздухе растворяется в воде, а при понижении парциального давления выделяется в атмосферу. Процессы образования и ассимиляции взаимосвязаны, благодаря этому содержание диоксида углерода в атмосферном воздухе относительно постоянно и составляет 0,03-0,04%. За последнее время концентрация диоксида углерода в воздухе промышленных городов увеличивается в результате интенсивного загрязнения воздуха продуктами сгорания топлива. Содержание диоксида углерода в городском воздухе может быть выше, чем в чистой атмосфере, и составлять до 0,05% и более. Известна роль диоксида углерода в создании «парникового эффекта», приводящего к повышению температуры приземного слоя воздуха.

Диоксид углерода является физиологическим возбудителем дыхательного центра. Его парциальное давление в крови обеспечивается регулированием кислотно-щелочного равновесия. В организме он находится в связанном состоянии в виде углекислых солей натрия в плазме и эритроцитах крови. При вдыхании больших концентраций диоксида углерода нарушаются окислительно-восстановительные процессы. Чем больше диоксида углерода во вдыхаемом воздухе, тем меньше его может выделить организм. Накопление диоксида углерода в крови и тканях ведет к развитию тканевой аноксии. При увеличении содержания диоксида углерода во вдыхаемом воздухе до 3-4% отмечаются симптомы интоксикации, при 8% возникает тяжелое отравление и наступает смерть. По содержанию диоксида углерода судят о чистоте воздуха в жилых и общественных зданиях. Значительное накопление этого соединения в воздухе закрытых помещений указывает на санитарное неблагополучие помещения (скученность людей, плохая вентиляция). ПДК диоксида углерода в воздухе лечебных учреждений равна 0,07%, в воздухе жилых и общественных зданий – 0,1%. Последняя величина принята в качестве расчетной при определении эффективности вентиляции жилых и общественных зданий.

Азот . Наряду с кислородом и углекислым газом в состав атмосферного воздуха входит азот, который по количественному содержанию является наиболее существенной частью атмосферного воздуха.

Азот принадлежит к инертным газам, он не поддерживает дыхание и горение. В атмосфере азота жизнь невозможна. В природе происходит его круговорот. Азот воздуха усваивается некоторыми видами бактерий почвы, а также сине-зелеными водорослями. Азот воздуха под влиянием электрических разрядов превращается в окислы, которые, вымываясь из атмосферы осадками, обогащают почву солями азотистой и азотной кислот. Под влиянием почвенных бактерий соли азотистой кислоты превращаются в соли азотной кислоты, которые в свою очередь усваиваются растениями и служат для синтеза белка. Установлено, что 95% атмосферного воздуха ассимилируется живыми организмами и лишь 5% связывается в результате физических процессов в природе. Следовательно, основная масса связанного азота имеет биогенное происхождение. Наряду с усвоением азота происходит его выделение в атмосферу. Свободный азот образуется при горении древесины, угля, нефти, небольшое количество свободного азота выделяется при разложении органических соединений микроорганизмами-денитрофикаторами. Таким образом, в природе идет непрерывный круговорот азота, в результате чего азот атмосферы превращается в органические соединения. При разложении этих соединений азот восстанавливается и поступает в атмосферу, а затем его вновь связывают биологические объекты.

Азот является разбавителем кислорода, выполняя в связи с этим жизненно важную функцию, так как дыхание чистым кислородом приводит к необратимым изменениям в организме. При изучении действия на организм различных концентраций азота отмечено, что его повышенное содержание во вдыхаемом воздухе способствует наступлению гипоксии и асфиксии вследствие снижения парциального давления кислорода. При увеличении содержания азота до 93% наступает смерть. Наиболее выраженные неблагоприятные свойства азот проявляет в условиях повышенного давления, что связано с его наркотическим действием. Известна также роль азота в происхождении кессонной болезни.

Инертные газы . К инертным газам относятся аргон, неон, гелий, криптон, ксенон и др. В химическом отношении эти газы инертны, в жидкостях организма растворяются в зависимости от парциального давления. Абсолютное количество этих газов в крови и тканях организма ничтожно. Среди инертных газов особое место занимают радон, актинон и торон – продукты распада естественных радиоактивных элементов радия, тория, актиния.

В химическом отношении эти газы инертны, как это уже было замечено выше, а их опасное воздействие на организм связано с их радиоактивностью. В природных условиях они определяют естественную радиоактивность атмосферы.

Температура воздуха

Атмосферный воздух нагревается главным образом от земной поверхности за счет тепла, полученного ею от Солнца. Около 47% солнечной энергии, достигающей земли, поглощается земной поверхностью и превращается в тепло. Примерно 34% солнечной энергии отражается обратно в космическое пространство от верхней поверхности облаков и земной поверхности, и только пятая часть (19%) солнечной энергии непосредственно нагревает атмосферу. В связи с этим максимальная температура воздуха бывает между 13 и 14 часами, когда земная поверхность нагрета в наибольшей степени. Нагретые приземные слои воздуха поднимаются вверх, постепенно охлаждаясь. Поэтому с увеличением высоты над уровнем моря температура воздуха понижается в среднем на 0,6оС на каждые 100 метров подъема.

Нагревание атмосферы происходит неравномерно и зависит, прежде всего, от географической широты: чем больше расстояние от экватора к полюсу, тем больше угол наклона солнечных лучей к плоскости земной поверхности, тем меньшее количество энергии поступает на единицу площади и меньше нагревает ее.

Разница температур воздуха в зависимости от широты местности может быть очень значительна и составлять величину более 100оС. Так, наиболее высокие температуры воздуха (до +60оС) зарегистрированы в экваториальной Африке, минимальные (до –90оС) – в Антарктиде.

Суточные колебания температуры воздуха бывают также очень существенны в ряде экваториальных стран, постоянно уменьшаясь по направлению к полюсам.

На суточные и годовые колебания температуры воздуха оказывает влияние целый ряд природных факторов: интенсивность солнечной радиации, характер и рельеф местности, высота над уровнем моря, близость морей, характер морских течений, растительный покров и др.

Влияние неблагоприятной температуры воздуха на организм наиболее выражено в условиях пребывания или работы людей на открытом воздухе, а также в некоторых производственных помещениях, где возможны очень высокие или очень низкие температуры воздуха. Это относится к сельскохозяйственным рабочим, строителям, нефтяникам, рыбакам и др., а также работающим в горячих цехах, в сверхглубоких шахтах (1-2 км), специалистам, обслуживающим холодильные установки и др.

В жилых и общественных помещениях существуют возможности обеспечить наиболее благоприятную температуру воздуха (за счет отопления, вентиляции помещений, использования кондиционеров и т.д.).

Атмосферное давление

На поверхности земного шара колебания атмосферного давления связаны с погодными условиями и в течение суток, как правило, не превышают 4-5 мм рт.ст.

Однако существуют особые условия жизни и трудовой деятельности человека, в которых наблюдаются значительные отклонения от нормального атмосферного давления, способные оказать патологическое воздействие.

ЛЕКЦИЯ № 3. Атмосферный воздух.

Тема: Атмосферный воздух, его химический состав и физиологическое

значение составных частей.

Атмосферные загрязнения; их влияние на здоровье населения.

План лекции:

    Химический состав атмосферного воздуха.

    Биологическая роль и физиологическое значение его составных частей: азота, кислорода, углекислого газа, озона, инертных газов.

    Понятие об атмосферных загрязнениях и их источниках.

    Влияние атмосферных загрязнений на здоровье (прямое воздействие).

    Влияние атмосферных загрязнений на условия жизни населения (косвенное воздействие на здоровье).

    Вопросы охраны атмосферного воздуха от загрязнения.

Газовая оболочка земли называется атмосферой. Общий вес земной атмосферы составляет 5,13  10 15 тонн.

Воздух, образующий атмосферу, представляет собой смесь различных газов. Состав сухого воздуха на уровне моря будет следующий:

Таблица № 1

Состав сухого воздуха при температуре 0 0 С и

давлении 760 мм рт. ст.

Составляющие

компоненты

Процентный состав

по объему

Концентрация в мг/м 3

Кислород

Углекислый газ

Закись азота

Состав земной атмосферы остается постоянным над сушей, над морем, в городах и сельской местности. Не изменяется он также с высотой. При этом следует помнить, что речь идет о процентном содержании составных частей воздуха на разных высотах. Однако этого нельзя сказать о весовой концентрации газов. По мере подъема вверх плотность воздуха падает и количество молекул, содержащихся в единице пространства, тоже снижается. Вследствие этого падает весовая концентрация газа и его парциальное давление.

Остановимся на характеристике отдельных составных частей воздуха.

Главной составной частью атмосферы является азот. Азот является инертным газом. Он не поддерживает дыхания и горения. В атмосфере азота жизнь невозможна.

Азот играет важную биологическую роль. Азот воздуха усваивается некоторыми видами бактерий и водорослями, которые образуют из него органические соединения.

Под влиянием атмосферного электричества образуется небольшое количество ионов азота, которые вымываются из атмосферы осадками и обогащают почву солями азотистой и азотной кислоты. Соли азотистой кислоты под влиянием почвенных бактерий превращаются в нитриты. Нитриты и соли аммиака усваиваются растениями и служат для синтеза белков.

Таким образом, осуществляется превращение инертного азота атмосферы в живую материю органического мира.

Ввиду недостатка азотистых удобрений природного происхождения, человечество научилось получать их искусственным путем. Создана и развивается азотно-туковая промышленность, которая перерабатывает атмосферный азот в аммиак и азотистые удобрения.

Биологическое значение азота не ограничивается его участием в круговороте азотистых веществ. Он играет важную роль как разбавитель кислорода атмосферы, так как в чистом кислороде жизнь невозможна.

Увеличение содержания азота в воздухе вызывает гипоксию и асфиксию вследствие снижения парциального давления кислорода.

При повышении парциального давления азот проявляет наркотические свойства. Однако, в условиях открытой атмосферы наркотическое действие азота не проявляется, так как колебания его концентрации незначительны.

Наиболее важным из компонентов атмосферы является газообразный кислород (О 2 ) .

Кислород в нашей Солнечной системе в свободном состоянии встречается только на Земле.

Много предположений выдвинуто относительно эволюции (развития) земного кислорода. Наиболее признанное объяснение заключается в том, что подавляющая часть кислорода в современной атмосфере образовалась в процессе фотосинтеза в биосфере; и только начальное, малое количество кислорода образовалось в результате фотосинтеза воды.

Биологическая роль кислорода чрезвычайно велика. Без кислорода невозможна жизнь. Земная атмосфера содержит 1,18  10 15 тонн кислорода.

В природе непрерывно идут процессы потребления кислорода: дыхание человека и животных, процессы горения, окисления. В то же время непрерывно идут процессы восстановления содержания кислорода в воздухе (фотосинтез). Растения поглощают углекислый газ, расщепляют его, усваивают углерод, а кислород выделяют в атмосферу. Растения выбрасывают в атмосферу 0,5  10 5 миллионов тонн кислорода. Этого достаточно чтобы покрыть естественную убыль кислорода. Поэтому содержание его в воздухе постоянно и составляет 20, 95%.

Непрерывное течение воздушных масс перемешивают тропосферу, вот почему не наблюдается разницы в содержании кислорода в городах и сельской местности. Концентрация кислорода колеблется в пределах нескольких десятых процентов. Это не имеет значения. Однако, в глубоких ямах, колодцах, пещерах содержание кислорода может падать, поэтому спуск в них опасен.

При падении парциального давления кислорода у человека и животных наблюдаются явления кислородного голодания. Значительные изменения парциального давления кислорода наступают при подъеме вверх над уровнем моря. Явления кислородной недостаточности могут наблюдаться при подъемах в горы (альпинизм, туризм), при авиаперелетах. Подъем на высоту 3000м может вызвать высотную или горную болезнь.

При длительном проживании в высокогорной местности у людей развивается привыкание к недостатку кислорода и наступает акклиматизация.

Высокое парциальное давление кислорода неблагоприятно для человека. При парциальном давлении более 600 мм уменьшается жизненная емкость легких. Вдыхание чистого кислорода (парциальное давление 760 мм) вызывает отек легких, пневмонию, судороги.

В естественных условиях в воздухе не наблюдается повышенное содержание кислорода.

Озон является составной частью атмосферы. Масса его составляет 3,5 миллиарда тонн. Содержание озона в атмосфере меняется по сезонам года: весной оно высокое, осенью низкое. Содержание озона зависит от широты местности: чем ближе к экватору, тем оно ниже. Концентрация озона имеет суточный ход: максимума оно достигает к полудню.

Концентрация озона неравномерно распределяется по высоте. Наиболее высокое его содержание наблюдается на высоте 20-30 км.

Озон непрерывно образуется в стратосфере. Под влиянием ультрафиолетовой радиации солнца, молекулы кислорода диссоциируют (распадаются) с образованием атомарного кислорода. Атомы кислорода рекомбинируются (соединяются) с молекулами кислорода и образуют озон (О 3). На высоте выше и ниже 20-30 км процессы фотосинтеза (образования) озона замедляются.

Наличие слоя озона в атмосфере имеет большое значение для существования жизни на Земле.

Озон задерживает коротковолновую часть спектра солнечной радиации, не пропускает волны короче 290 нм (нанометров). При отсутствии озона жизнь на земле была бы невозможна, вследствие губительного действия короткой ультрафиолетовой радиации на все живое.

Озон поглощает также инфракрасную радиацию с длиной волны 9,5 мкм (микрон). Благодаря этому, озон задерживает около 20 процентов теплового излучения земли, уменьшая потерю ее тепла. В отсутствие озона абсолютная температура Земли была бы ниже на 7 0 .

В нижний слой атмосферы – тропосферу озон заносится из стратосферы в результате перемешивания воздушных масс. При слабом перемешивании концентрация озона у поверхности земли падает. Увеличение озона в воздухе наблюдается при грозе в результате разрядов атмосферного электричества и увеличения турбулентности (перемешивания) атмосферы.

Вместе с тем, значительное повышение концентрации озона в воздухе является результатом фотохимического окисления органических веществ, которые поступают в атмосферу с выхлопными газами автомобилей и выбросами промышленности. Озон относится к числу токсических веществ. Озон оказывает раздражающее действие на слизистые оболочки глаз, носа, горла в концентрации 0,2-1 мг/м 3 .

Углекислый газ (СО 2 ) находится в атмосфере в концентрации 0,03%. Общее количество его равно 2330 миллиардов тонн. Большое количество углекислого газа содержится в растворенном виде в воде морей и океанов. В связанном виде он входит в состав доломитов и известняков.

Атмосфера постоянно пополняется углекислым газом в результате процессов жизнедеятельности живых организмов, процессов горения, гниения, брожения. Человек выделяет в день 580 л углекислого газа. Большое количество углекислого газа выделяется при разложении известняков.

Несмотря на наличие многочисленных источников образования, существенного накопления углекислого газа в воздухе не происходит. Углекислый газ постоянно ассимилируется (усваивается) растениями в процессе фотосинтеза.

Кроме растений регулятором содержания углекислого газа в атмосфере являются моря и океаны. При повышении парциального давления углекислого газа в воздухе, он растворяется в воде, а при снижении выделяется в атмосферу.

В приземной атмосфере наблюдаются небольшие колебания концентрации углекислого газа: над океаном она ниже, чем над сушей; в лесу выше, чем в поле; в городах выше, чем за городом.

Углекислый газ играет большую роль в жизнедеятельности животных и человека. Он является побудителем дыхательного центра.

В атмосферном воздухе присутствует некоторое количество инертных газов : аргона, неона, гелия, криптона и ксенона. Эти газы относятся к нулевой группе таблицы Менделеева, не вступают в реакции с другими элементами, являются инертными в химическом смысле.

Инертные газы являются наркотическими. Их наркотические свойства проявляются при высоком барометрическом давлении. В открытой атмосфере наркотические свойства инертных газов не могут проявиться.

Кроме составных частей атмосферы, в ней содержатся различные примеси природного происхождения и загрязнения, вносимые в результате деятельности человека.

Примеси, которые присутствуют в воздухе помимо его естественного химического состава, называются атмосферными загрязнениями .

Атмосферные загрязнения подразделяются на естественные и искусственные.

К естественным загрязнениям относят примеси, поступающие в воздух в результате стихийных природных процессов (растительная, почвенная пыль, извержение вулканов, космическая пыль).

Искусственные атмосферные загрязнения образуются в результате производственной деятельности человека.

Искусственные источники атмосферных загрязнений делят на 4 группы:

    транспорт;

    промышленность;

    теплоэнергетика;

    сжигание мусора.

Остановимся на их краткой характеристике.

Современная ситуация характеризуется тем, что объем выбросов автомобильного транспорта превышает объем выбросов промышленных предприятий.

Один автомобиль выбрасывает в воздушный бассейн более 200 химических соединений. Каждый автомобиль потребляет в год в среднем 2 тонны топлива и 30 тонн воздуха, а выбрасывает в атмосферу 700 кг оксида углерода (СО), 230 кг несгоревших углеводородов, 40 кг окислов азота (NО 2) и 2-5 кг твердых веществ.

Современный город насыщен и другими видами транспорта: железнодорожным, водным и воздушным. Общее количество выбросов в окружающую среду от всех видов транспорта имеет тенденцию к непрерывному росту.

Промышленные предприятия по степени наносимого вреда окружающей среде занимают второе место после транспорта.

Наиболее интенсивно загрязняют атмосферный воздух предприятия черной и цветной металлургии, нефтехимической и коксохимической промышленности, а также предприятия по производству строительных материалов. Они выбрасывают в атмосферу десятки тонн сажи, пыли, металлов и их соединений (меди, цинка, свинца, никеля, олова и др.).

Поступая в атмосферу, металлы загрязняют почву, накапливаются в ней, проникают в воду водоемов.

В районах расположения промышленных предприятий, население подвергается риску неблагоприятного воздействия атмосферных загрязнений.

Помимо твердых частиц промышленность выбрасывает в воздух различные газы: серный ангидрид, окись углерода, окислы азота, сероводород, углеводороды, радиоактивные газы.

Загрязняющие вещества могут длительно находиться в окружающей среде и оказывать вредное влияние на организм человека.

Например, углеводороды сохраняются в окружающей среде до 16 лет, принимают активное участие в фотохимических процессах в атмосферном воздухе с образованием токсических туманов.

Массивное загрязнение атмосферы наблюдается при сжигании твердого и жидкого топлива на теплоэлектростанциях. Они являются основными источниками загрязнения атмосферы окислами серы и азота, окисью углерода, сажей и пылью. Для этих источников характерна массивность загрязнения атмосферного воздуха.

В настоящее время известно много фактов неблагоприятного влияния атмосферных загрязнений на здоровье людей.

Атмосферные загрязнения оказывают на организм человека как острое, так и хроническое воздействие.

Примерами острого влияния атмосферных загрязнений на здоровье населения являются токсические туманы. Концентрации токсических веществ в воздухе возрастали при неблагоприятных метеорологических условиях.

Первый токсический туман зарегистрирован в Бельгии в 1930 году. Пострадало несколько сот человек, 60 человек умерли. В последующем подобные случаи повторялись: в 1948 году в американском городе Донора. Пострадало 6000 человек. В 1952 году от «великого лондонского тумана» умерло 4000 человек. В 1962 году по этой же причине погибло 750 жителей Лондона. В 1970 году от смога над японской столицей (Токио) пострадало 10 тысяч человек, 1971 году – 28 тысяч.

Помимо перечисленных катастроф, анализ материалов исследований отечественных и зарубежных авторов обращает внимание на повышение общей заболеваемости населения по причине загрязнения атмосферы.

Выполненные в данном плане исследования позволяют заключить, что в результате воздействия атмосферных загрязнений в промышленных центрах наблюдается повышение:

    общего уровня смертности от сердечно-сосудистых заболеваний и болезней органов дыхания;

    острой неспецифической заболеваемости верхних дыхательных путей;

    хронических бронхитов;

    бронхиальной астмы;

    эмфиземы легких;

    рака легких;

    снижение продолжительности жизни и творческой активности.

Кроме того, в настоящее время математический анализ выявил статистически значимую корреляционную зависимость между уровнем заболеваемости населения болезнями крови, органов пищеварения, болезнями кожи и уровнями загрязнения атмосферного воздуха.

Органы дыхания, пищеварительная система и кожа являются «входными воротами» для токсических веществ и служат мишенями их прямого и опосредованного действия.

Влияние атмосферных загрязнений на условия жизни расценивается как непрямое (косвенное) воздействие атмосферных загрязнений на здоровье населения.

Оно включает:

    снижение общей освещенности;

    снижение ультрафиолетовой радиации солнца;

    изменение климатических условий;

    ухудшение жилищно-бытовых условий;

    отрицательное воздействие на зеленые насаждения;

    отрицательное воздействие на животных.

Вещества, загрязняющие атмосферу, наносят большой ущерб зданиям, сооружениям, строительным материалам.

Общий экономический ущерб США от загрязнителей атмосферы, включая их влияние на здоровье человека, строительные материалы, металлы, ткани, кожу, бумагу, краски, резину и другие материалы ежегодно составляет 15-20 миллиардов долларов.

Все вышесказанное свидетельствует о том, что охрана атмосферного воздуха от загрязнения является проблемой чрезвычайной важности и объектом пристального внимания специалистов во всех странах мира.

Все мероприятия по охране атмосферного воздуха должны осуществляться комплексно по нескольким направлениям:

    Законодательные меры. Это принятые правительством страны законы, направленные на охрану воздушной среды;

    Рациональное размещение промышленных и жилых зон;

    Технологические мероприятия, направленные на снижение выбросов в атмосферу;

    Санитарно-технические мероприятия;

    Разработка гигиенических нормативов для атмосферного воздуха;

    Контроль за чистотой атмосферного воздуха;

    Контроль за работой промышленных предприятий;

    Благоустройство населенных мест, озеленение, обводнение, создание защитных разрывов между промышленными предприятиями и жилыми комплексами.

Кроме перечисленных мер внутригосударственного плана, в настоящее время разрабатываются и широко внедряются межгосударственные Программы по охране атмосферного воздуха.

Проблема охраны воздушного бассейна решается в ряде международных организаций – ВОЗ, ООН, ЮНЕСКО и других.

Его нельзя потрогать и нельзя увидеть, а главное, чем мы ему обязаны - жизнь . Конечно, это воздух, который занимал не последнее место в фольклоре каждого народа. Как представляли его люди древности, и что он представляет из себя на самом деле - об этом я напишу ниже.

Газы, из которых состоит воздух

Естественная смесь газов называется воздухом. Его необходимость и значение для живого трудно недооценить - он играет важную роль в окислительных процессах , которые сопровождаются выделением необходимой для всего живого энергии. Путем экспериментов ученые смогли определить точный его состав, но главное, что необходимо понять - это не однородное вещество, а газовая смесь . Около 99% состава - смесь кислорода и азота, а в целом воздух образует атмосферу нашей планеты. Итак, смесь состоит из следующих газов:

  • метан;
  • криптон;
  • гелий;
  • ксенон;
  • водород;
  • неон;
  • углекислый газ;
  • кислород;
  • азот;
  • аргон.

Нужно отметить, что состав не является постоянным и может значительно отличаться на разных участках. Например, большие города отличаются большим содержанием углекислого газа. В горах будет наблюдаться пониженный уровень кислорода , поскольку этот газ тяжелее азота, и по мере восхождения плотность его будет падать. Наука утверждает, что состав может отличаться в разных частях планеты от 1% до 4% для каждого из газов .


Кроме процентного соотношения газов, воздух характеризуется по следующим параметрам:

  • влажность;
  • температура;
  • давление.

Воздух постоянно находится в движении , образуя вертикальные потоки. Горизонтальные - ветры, зависят от определенных природных условий, поэтому могут иметь разные характеристики скорости, силы и направления.

Воздух в фольклоре

Легенды каждого народа наделяют воздух некими «живыми» качествами . Как правило, духи этой стихии представляли собой неуловимых и невидимых созданий. Согласно легендам, они населяли вершины гор или облака , и отличались предрасположенностью к человеку. Именно они, как считалось, творили снежинки и собирали облака в тучи, летая по небу на ветрах.


Египтяне считали воздух символом жизни , а индийцы полагали, что выдох Брахмы - жизнь , а вдох, соответственно - смерть. Что касается славян, то воздух (ветер) занимал чуть ли не центральное место в легендах этого народа. Он мог слышать, а иногда даже исполнять небольшие просьбы. Однако не всегда он был добр, иногда выступая на стороне сил зла в виде злого и непредсказуемого странника .

Оговоримся сразу, азот в воздухе занимает большую часть, однако и химический состав оставшейся доли весьма интересен и разнообразен. Если коротко, то список основных элементов выглядит следующим образом.

Однако дадим и небольшие пояснения по функциям этих химических элементов.

1. Азот

Содержание азота в воздухе – 78% по объему и 75% по массе, то есть этот элемент доминирует в атмосфере, имеет звание одного из самых распространенных на Земле, и, кроме того, содержится и за пределами зоны обитания человека – на Уране, Нептуне и в межзвездных пространствах. Итак, сколько азота в воздухе, мы уже разобрались, остался вопрос о его функции. Азот необходим для существования живых существ, он входит в состав:

  • белков;
  • аминокислот;
  • нуклеиновых кислот;
  • хлорофилла;
  • гемоглобина и др.

В среднем около 2% живой клетки составляют как раз атомы азота, что объясняет, зачем столько азота в воздухе в процентах объема и массы.
Азот также является одним из инертных газов, добываемых из атмосферного воздуха. Из него синтезируют аммиак, используют для охлаждения и в других целях.

2. Кислород

Содержание кислорода в воздухе – один из самых популярных вопросов. Сохраняя интригу, отвлечемся на один забавный факт: кислород открыли дважды – в 1771 и 1774 годах, однако из-за разницы в публикациях открытия, почести открытия элемента достались английскому химику Джозефу Пристли, который фактически выделил кислород вторым. Итак, доля кислорода в воздухе колеблется около 21% по объему и 23% по массе. Вместе с азотом эти два газа образуют 99% всего земного воздуха. Однако процент кислорода в воздухе меньше, чем азота, и при этом мы не испытываем проблем с дыханием. Дело в том, что количество кислорода в воздухе оптимально рассчитано именно для нормального дыхания, в чистом виде этот газ действует на организм подобно яду, приводит к затруднениям в работе нервной системы, сбоям дыхания и кровообращения. При этом недостаток кислорода также негативно сказывается на здоровье, вызывая кислородное голодание и все связанные с ним неприятные симптомы. Поэтому сколько кислорода в воздухе содержится, столько и нужно для здорового полноценного дыхания.

3. Аргон

Аргон в воздухе занимает третье место, он не имеет запаха, цвета и вкуса. Значимой биологической роли этого газа не выявлено, однако он обладает наркотическим эффектом и даже считается допингом. Добытый из атмосферы аргон используют в промышленности, медицине, для создания искусственной атмосферы, химического синтеза, пожаротушения, создания лазеров и пр.

4. Углекислый газ

Углекислый газ составляет атмосферу Венеры и Марса, его процент в земном воздухе куда ниже. При этом огромное количество углекислоты содержится в океане, он регулярно поставляется всеми дышащими организмами, выбрасывается за счет работы промышленности. В жизни человека углекислый газ используется в пожаротушении, пищевой промышленности как газ и как пищевая добавка Е290 – консервант и разрыхлитель. В твердом виде углекислота – один из самых известных хладагентов «сухой лед».

5. Неон

Тот самый загадочный свет дискотечных фонарей, яркие вывески и современные фары используют пятый по распространенности химический элемент, который также вдыхает человек – неон. Как и многие инертные газы, неон оказывает на человека наркотическое действие при определенном давлении, однако именно этот газ используют в подготовке водолазов и других людей, работающих при повышенном давлении. Также неоново-гелиевые смеси используются в медицине при расстройствах дыхания, сам неон используют для охлаждения, в производстве сигнальных огней и тех самых неоновых ламп. Однако, вопреки стереотипу, неоновый свет не синий, а красный. Все остальные цвета дают лампы с другими газами.

6. Метан

Метан и воздух имеют очень древнюю историю: в первичной атмосфере, еще до появления человека, метан был в куда большем количестве. Сейчас этот газ, добываемый и используемый как топливо и сырье в производстве, не так широко распространен в атмосфере, но по-прежнему выделяется из Земли. Современные исследования устанавливают роль метана в дыхании и жизнедеятельности организма человека, однако авторитетных данных на этот счет пока нет.

7. Гелий

Посмотрев, сколько гелия в воздухе, любой поймет, что этот газ не относится к числу первостепенных по важности. Действительно, сложно определить биологическое значение этого газа. Не считая забавного искажения голоса при вдыхании гелия из шарика 🙂 Однако гелий широко применяется в промышленности: в металлургии, пищевой промышленности, для наполнения воздухоплавающих судов и метеорологических зондов, в лазерах, ядерных реакторах и т.д.

8. Криптон

Речь не идет о родине Супермена 🙂 Криптон – инертный газ, который в три раза тяжелее воздуха, химически инертен, добывается из воздуха, используется в лампах накаливания, лазерах и все еще активно изучается. Из интересных свойств криптона стоит отметить, что при давлении в 3,5 атмосферы он оказывает наркотический эффект на человека, а при 6 атмосферах приобретает резкий запах.

9. Водород

Водород в воздухе занимает 0,00005% по объему и 0,00008% по массе, но при этом именно он – самый распространенный элемент во Вселенной. О его истории, производстве и применении вполне можно написать отдельную статью, поэтому сейчас ограничимся небольшим списком отраслей: химическая, топливная, пищевая промышленности, авиация, метеорология, электроэнергетика.

10. Ксенон

Последний в составе воздуха, изначально и вовсе считавшийся только примесью к криптону. Его название переводится как «чужой», а процент содержания и на Земле, и за ее пределами минимальный, что обусловило его высокую стоимость. Сейчас без ксенона не обходятся: производство мощных и импульсных источников света, диагностика и наркоз в медицине, двигатели космических аппаратов, ракетное топливо. Кроме того, при вдыхании ксенон значительно понижает голос (обратный эффект гелию), а с недавнего времени вдыхание этого газа причислено к списку допингов.

Атмосферный воздух представляет собой смесь различных газов. В его составе имеются постоянные компоненты атмосферы (кислород, азот, углекислый газ), инертные газы (аргон, гелий, неон, криптон, водород, ксенон, радон), небольшие количества озона, закиси азота, метана, йода, водяных паров, а также в переменных количествах различные примеси природного происхождения и загрязнения, образующиеся в результате производственной деятельности человека.

Кислород (О2) самая важная для человека часть воздуха. Он необходим для осуществления окислительных процессов в организме. В атмосферном воздухе содержание кислорода равно 20,95 %, в выдыхаемом человеком воздухе - 15,4-16 %. Снижение его в атмосферном воздухе до 13-15 % приводит к нарушению физиологических функций, а до 7-8 % - к смертельному исходу.

Азот (N) - является основной составной частью атмосферного воздуха. Вдыхаемый и выдыхаемый человеком воздух содержит примерно одно и то же количество азота - 78,97-79,2 %. Биологическая роль азота заключается, главным образом, в том, что он является разбавителем кислорода, поскольку в чистом кислороде жизнь невозможна. При увеличении содержания азота до 93 % наступает смерть.

Диоксид углерода (углекислый газ), СО2 - является физиологическим регулятором дыхания. Содержание в чистом воздухе составляет 0,03 %, в выдыхаемом человеком - 3 %.

Снижение концентрации СО2 во вдыхаемом воздухе не представляет опасности, т.к. необходимый уровень его в крови поддерживается регуляторными механизмами за счет выделения при обменных процессах.

Повышение содержания углекислого газа во вдыхаемом воздухе до 0,2 % вызывает у человека нарушение самочувствия, при 3-4 % наблюдается возбужденное состояние, головная боль, шум в ушах, сердцебиение, замедление пульса, а при 8 % возникает тяжелое отравление, потеря сознания и наступает смерть.

За последнее время концентрация диоксида углерода в воздухе промышленных городов увеличивается в результате интенсивного загрязнения воздуха продуктами сгорания топлива. Повышение в атмосферном воздухе СО2 приводит к появлению в городах токсических туманов и «парниковому эффекту», связанному с задержкой углекислотой теплового излучения земли.

Повышение содержания СО2 сверх установленной нормы свидетельствует об общем ухудшении санитарного состояния воздуха, т.к наряду с диоксидом углерода могут накапливаются другие токсические вещества, может ухудшается ионизационный режим, возрастать запыленность и микробная загрязненность.

Озон (О3). Основное его количество отмечается на уровне 20-30 км от поверхности Земли. В приземных слоях атмосферы содержится ничтожно малое количество озона - не более 0,000001 мг/л. Озон защищает живые организмы земли от губительного действия коротковолновой ультрафиолетовой радиации и одновременно поглощает длинноволновую инфракрасную радиацию, исходящую от Земли, предохраняя ее от чрезмерного охлаждения. Озон обладает окислительными способностями, поэтому в загрязненном воздухе городов его концентрация ниже, чем в сельской местности. В связи с этим озон считался показателем чистоты воздуха. Однако в последнее время установлено, что озон образуется в результате фотохимических реакций при формировании смога, поэтому обнаружение озона в атмосферном воздухе крупных городов считают показателем его загрязнения.

Инертные газы - не имеют выраженного гигиенического и физиологического значения.

Хозяйственно-производственная деятельность человека является источником загрязнения воздуха различными газообразными примесями и взвешенными частицами. Повышенное содержание вредных веществ в атмосфере и в воздухе помещений неблагоприятно сказывается на организме человека. В связи с этим важнейшей гигиенической задачей является нормирование их допустимого содержания в воздухе.

Санитарно-гигиеническое состояние воздуха принято оценивать по предельно допустимым концентрациям (ПДК) вредных веществ в воздухе рабочей зоны.

ПДК вредных веществ в воздухе рабочей зоны - это концентрация, которая при ежедневной 8-часовой работе, но не более 41 час в неделю, в продолжение всего рабочего стажа не вызывает заболеваний или отклонений в состоянии здоровья настоящего и последующих поколений. Устанавливают ПДК среднесуточную и максимально разовую (действие до 30 мин в воздухе рабочей зоны). ПДК для одного и того же вещества может быть различной в зависимости от длительности его воздействия на человека.

На пищевых предприятиях основными причинами загрязнение воздуха вредными веществами являются нарушения технологического процесса и аварийные ситуации (канализации, вентиляции и др.).

Гигиеническую опасность в воздухе помещений представляют оксид углерода, аммиак, сероводород, сернистый газ, пыль и др., а также загрязнение воздуха микроорганизмами.

Оксид углерода (СО) - газ без запаха и цвета, попадает в воздух как продукт неполного сгорания жидкого и твердого топлива. Он вызывает острое отравление при концентрации в воздухе 220-500 мг/м3 и хроническое отравление - при постоянном вдыхании концентрации 20-30 мг/м3. Среднесуточная ПДК оксида углерода в атмосферном воздухе - 1 мг/м3, в воздухе рабочей зоны - от 20 до 200 мг/м3 (в зависимости от длительности работы).

Диоксид серы (S02) - наиболее часто встречающаяся примесь атмосферного воздуха, поскольку сера содержится в различных видах топлива. Этот газ обладает общетоксическим действием и вызывает заболевания дыхательных путей. Раздражающее действие газа обнаруживается при концентрации его в воздухе свыше 20 мг/м3. В атмосферном воздухе среднесуточная ПДК диоксида серы - 0,05 мг/м3, в воздухе рабочей зоны - 10 мг/м3.

Сероводород (H2S) - обычно попадает в атмосферный воздух с отходами химических, нефтеперерабатывающих и металлургических заводов, а также образуется и может загрязнять воздух помещений в результате гниения пищевых отходов и белковых продуктов. Сероводород обладает общетоксическим действием и вызывает неприятные ощущения у человека при концентрации 0,04-0,12 мг/м3, а концентрация более 1000 мг/м3 может стать смертельной. В атмосферном воздухе среднесуточная ПДК сероводорода - 0,008 мг/м3, в воздухе рабочей зоны - до 10 мг/м3.

Аммиак (NH3) - накапливается в воздухе закрытых помещений при гниении белковых продуктов, неисправности холодильных установок с аммиачным охлаждением, при авариях канализационных сооружений и др. Токсичен для организма.

Акролеин - продукт разложения жира при тепловой обработке, способен вызывать в производственных условиях аллергические заболевания. ПДК в рабочей зоне - 0,2 мг/м3.

Полициклические ароматические углеводороды (ПАУ) - отмечена их связь с развитием злокачественных новообразований. Наиболее распространенным и наиболее активным из них является 3-4-бенз(а)пирен, который выделяется при сжигании топлива: каменного угля, нефти, бензина, газа. Максимальное количество 3-4-бенз(а)пирена выделяется при сжигании каменного угля, минимальное - при сжигании газа. На пищевых предприятиях источником загрязнения воздуха ПАУ может являться длительное использование перегретого жира. Среднесуточная ПДК циклических ароматических углеводородов в атмосферном воздухе не должна превышать 0,001 мг/м3.

Механические примеси - пыль, частицы почвы, дыма, золы, сажи. Запыленность возрастает при недостаточном озеленении территории, неблагоустроенных подъездных путях, нарушении сбора и вывоза отходов производства, а также при нарушении санитарного режима уборки помещений (сухая или нерегулярная влажная уборка и др.). Кроме того, запыленность помещений увеличивается при нарушениях в устройстве и эксплуатации вентиляции, планировочных решениях (например, при недостаточной изоляции кладовой овощей от производственных цехов и др.).

Воздействие пыли на человека зависит от размеров пылевых частиц и их удельного веса. Наиболее опасны для человека пылинки размером менее 1 мкм в диаметре, т.к. они легко проникают в легкие и могут стать причиной их хронического заболевания (пневмокониоз). Пыль, содержащая примеси ядовитых химических соединений, оказывает на организм токсическое действие.

ПДК сажи и копоти жестко нормируется, ввиду содержания канцерогенных углеводородов (ПАУ): среднесуточная ПДК сажи - 0,05 мг/м3.

В кондитерских цехах большой мощности возможна запыленность воздуха сахарной и мучной пылью. Пыль мучная в виде аэрозолей способна вызывать раздражение дыхательных путей, а также аллергические заболевания. ПДК мучной пыли в рабочей зоне не должна превышать 6 мг/м3. В этих пределах (2-6 мг/м3) регламентируются предельно допустимые концентрации и других видов растительной пыли, содержащей не более 0,2 % соединений кремния.