Вектор нормали прямой (нормальный вектор). Прямая на плоскости. Линейность уравнения прямой и обратное утверждение. Направляющий и нормальный векторы

Направляющим вектором прямой l называется всякий ненулевой вектор (m , n ), параллельный этой прямой.

Пусть заданы точка M 1 (x 1 , y 1) и направляющий вектор (m , n ), тогда уравнение прямой, проходящей через точку M 1 в направлении вектора имеет вид: . Это уравнение называется каноническим уравнением прямой.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. Запишем каноническое уравнение прямой , преобразуем его. Получим х + у - 3 = 0

Уравнение прямой, проходящей через две точки

Пусть на плоскости заданы две точки M 1 (x 1 , y 1) и M 2 (x 2, y 2), тогда уравнение прямой, проходящей через эти точки имеет вид: . Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Применяя записанную выше формулу, получаем: ,

Уравнение прямой по точке и угловому коэффициенту

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду: и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k.

Уравнение прямой в отрезках

Если в общем уравнении прямой Ах + Ву + С = 0 коэффициент С ¹ 0, то, разделив на С, получим: или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох , а b – координатой точки пересечения прямой с осью Оу .

Пример. Задано общее уравнение прямой х у + 1 = 0. Найти уравнение этой прямой в отрезках. А = -1, В = 1, С = 1, тогда а = -1, b = 1. Уравнение прямой в отрезках примет вид .

Пример. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.

Находим уравнение стороны АВ: ;

4x = 6y – 6; 2x – 3y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b .

k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3x + 2y – 34 = 0.


Практическое занятие №7

Наименование занятия: Кривые второго порядка.

Цель занятия: Научиться составлять кривых 2-го порядка, строить их.

Подготовка к занятию: Повторить теоретический материал по теме «Кривые 2-го порядка»

Литература:

  1. Дадаян А.А. «Математика», 2004г.

Задание на занятие:

Порядок проведения занятия:

  1. Получить допуск к работе
  2. Выполнить задания
  3. Ответить на контрольные вопросы.
  1. Наименование, цель занятия, задание;
  2. Выполненное задание;
  3. Ответы на контрольные вопросы.

Контрольные вопросы для зачета:

  1. Дать определение кривых второго порядка (окружности, эллипса, гиперболы, параболы), записать их канонические уравнения.
  2. Что называется эксцентриситетом эллипса, гиперболы? Как его найти?
  3. Записать уравнение равносторонней гиперболы

ПРИЛОЖЕНИЕ

Окружностью называется множество всех точек плоскости, равноудаленных от одной точки, называемой центром.

Пусть центром окружности является точка О (a; b ), а расстояние до любой точки М (х;у ) окружности равно R . Тогда (x – a ) 2 + (y – b ) 2 = R 2 – каноническое уравнение окружности с центром О (a; b ) и радиусом R.

Пример. Найти координаты центра и радиус окружности, если ее уравнение задано в виде: 2x 2 + 2y 2 – 8x + 5y – 4 = 0.

Для нахождения координат центра и радиуса окружности данное уравнение необходимо привести к каноническому виду. Для этого выделим полные квадраты:

x 2 + y 2 – 4x + 2,5y – 2 = 0

x 2 – 4x + 4 – 4 + y 2 + 2,5y + 25/16 – 25/16 – 2 = 0

(x – 2) 2 + (y + 5/4) 2 – 25/16 – 6 = 0

(x – 2) 2 + (y + 5/4) 2 = 121/16

Отсюда находим координаты центра О (2; -5/4); радиус R = 11/4.

Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух заданных точек (называемых фокусами) есть величина постоянная, большая, чем расстояние между фокусами.

Фокусы обозначаются буквами F 1 , F с , сумма расстояний от любой точки эллипса до фокусов – 2а (2а > 2c ), a – большая полуось; b – малая полуось.

Каноническое уравнение эллипса имеет вид: , где a , b и c связаны между собой равенствами: a 2 – b 2 = c 2 (или b 2 – a 2 = c 2).

Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к длине большей оси и называется эксцентриситетом. или .

Т.к. по определению 2а > 2c , то эксцентриситет всегда выражается правильной дробью, т.е. .

Пример. Составить уравнение эллипса, если его фокусы F 1 (0; 0), F 2 (1; 1), большая ось равна 2.

Уравнение эллипса имеет вид: .

Расстояние между фокусами: 2c = , таким образом, a 2 – b 2 = c 2 = . По условию 2а = 2, следовательно, а = 1, b = Искомое уравнение эллипса примет вид: .

Гиперболой называется множество точек плоскости, разность расстояний от каждой из которых до двух заданных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Каноническое уравнение гиперболы имеет вид: или , где a , b и c связаны между собой равенством a 2 + b 2 = c 2 . Гипербола симметрична относительно середины отрезка, соединяющего фокусы и относительно осей координат. Фокусы обозначаются буквами F 1 , F 2 , расстояние между фокусами – 2с , разность расстояний от любой точки гиперболы до фокусов – 2а (2а < 2c ). Ось 2а называется действительной осью гиперболы, ось 2b – мнимой осью гиперболы. Гипербола имеет две асимптоты, уравнения которых

Эксцентриситетом гиперболы называется отношение расстояния между фокусами к длине действительной оси: или . Т.к. по определению 2а < 2c , то эксцентриситет гиперболы всегда выражается неправильной дробью, т.е. .

Если длина действительной оси равна длине мнимой оси, т.е. а = b , ε = , то гипербола называется равносторонней .

Пример. Составить каноническое уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса с уравнением

Находим фокусное расстояние c 2 = 25 – 9 = 16.

Для гиперболы: c 2 = a 2 + b 2 = 16, ε = c/a = 2; c = 2a ; c 2 = 4a 2 ; a 2 = 4; b 2 = 16 – 4 = 12.

Тогда - искомое уравнение гиперболы.

Параболой называется множество точек плоскости, равноудаленных от заданной точки, называемой фокусом, и данной прямой, называемой директрисой.

Фокус параболы обозначается буквой F , директриса – d , расстояние от фокуса до директрисы – р .

Каноническое уравнение параболы, фокус которой расположен на оси абсцисс, имеет вид:

y 2 = 2px или y 2 = -2px

x = -p /2, x = p /2

Каноническое уравнение параболы, фокус которой расположен на оси ординат, имеет вид:

х 2 = 2 или х 2 = -2

Уравнения директрис соответственно у = -p /2, у = p /2

Пример. На параболе у 2 = 8х найти точки, расстояние которой от директрисы равно 4.

Из уравнения параболы получаем, что р = 4. r = x + p /2 = 4; следовательно:

x = 2; y 2 = 16; y = ±4. Искомые точки: M 1 (2; 4), M 2 (2; -4).


Практическое занятие №8

Наименование занятия: Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексных чисел .

Цель занятия: Научиться выполнять действия над комплексными числами.

Подготовка к занятию: Повторить теоретический материал по теме «Комплексные числа».

Литература:

  1. Григорьев В.П., Дубинский Ю.А. «Элементы высшей математики», 2008г.

Задание на занятие:

  1. Вычислить:

1) i 145 + i 147 + i 264 + i 345 + i 117 ;

2) (i 64 + i 17 + i 13 + i 82)·(i 72 – i 34);

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости α 1 и α 2 , заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α 1 и α 2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

.

Пример. Определить угол между плоскостями x +2y -3z +4=0 и 2x +3y +z +8=0.

Условие параллельности двух плоскостей.

Две плоскости α 1 и α 2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

или

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Примеры.

ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М 1 (x 1 , y 1 , z 1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t , что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М , лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x , y и z и точка М перемещается по прямой.


КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М 1 (x 1 , y 1 , z 1) – точка, лежащая на прямой l , и – её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор .

Ясно, что векторы и коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t . Действительно, из параметрических уравнений получаем или .

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюда x = 2 + 3t , y = –1 + 2t , z = 1 –t .

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox . Тогда направляющий вектор прямой перпендикулярен Ox , следовательно, m =0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t , получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осям Ox и Oy или параллельная оси Oz .

Примеры.

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагая z = 0:

Решив эту систему, найдем точку M 1 (1;2;0).

Аналогично, полагая y = 0, получим точку пересечения прямой с плоскостью xOz :

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М 1 на прямой и направляющий вектор прямой.

Координаты точки М 1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y = 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l : .


УГОЛ МЕЖДУ ПРЯМЫМИ

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение . Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

. C = 0, А ≠0, В ≠ 0 - прямая проходит через начало координат

. А = 0, В ≠0, С ≠0 { By + C = 0} - прямая параллельна оси Ох

. В = 0, А ≠0, С ≠ 0 { Ax + C = 0} - прямая параллельна оси Оу

. В = С = 0, А ≠0 - прямая совпадает с осью Оу

. А = С = 0, В ≠0 - прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких - либо заданных

начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение . В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой, заданной уравнением

Ах + Ву + С = 0.

Пример . Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение . Составим при А = 3 и В = -1 уравнение прямой: 3х - у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 - 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х - у - 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M2 (x 2, y 2 , z 2), тогда уравнение прямой ,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой .

Пример . Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение . Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение . Каждый ненулевой вектор (α 1 , α 2) , компоненты которого удовлетворяют условию

Аα 1 + Вα 2 = 0 называется направляющим вектором прямой.

Ах + Ву + С = 0.

Пример . Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение . Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3 , т.е. искомое уравнение:

х + у - 3 = 0

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на -С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b - координатой точки пересечения прямой с осью Оу.

Пример . Задано общее уравнение прямой х - у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 - нормальное уравнение прямой .

Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0.

р - длина перпендикуляра, опущенного из начала координат на прямую,

а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример . Дано общее уравнение прямой 12х - 5у - 65 = 0 . Требуется написать различные типы уравнений

этой прямой.

Уравнение этой прямой в отрезках :

Уравнение этой прямой с угловым коэффициентом : (делим на 5)

Уравнение прямой :

cos φ = 12/13; sin φ= -5/13; p = 5.

Следует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые,

параллельные осям или проходящие через начало координат.

Угол между прямыми на плоскости.

Определение . Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми

будет определяться как

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны,

если k 1 = -1/ k 2 .

Теорема .

Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты

А 1 = λА, В 1 = λВ . Если еще и С 1 = λС , то прямые совпадают. Координаты точки пересечения двух прямых

находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.

Определение . Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b

представляется уравнением:

Расстояние от точки до прямой.

Теорема . Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С = 0 определяется как:

Доказательство . Пусть точка М 1 (х 1 , у 1) - основание перпендикуляра, опущенного из точки М на заданную

прямую. Тогда расстояние между точками М и М 1 :

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы - это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно

заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

§ 1. Направляющий вектор и угловой коэффициент прямой (в произвольной аффинной системе координат). Уравнение прямой

Определение. Всякий ненулевой вектор, коллинеарный данной прямой, называется ее направляющим вектором.

Так как всякие два направляющих вектора одной и той же прямой коллинеарны между собою, то один из них получается из другого умножением на некоторое число .

Ббльшая часть этой главы исследованию прямых линий на плоскости; лишь в §§ 4 и 10 рассматриваются прямые в пространстве; прямые в пространстве будут изучаться еще и в главе X.

Предположим, что в данной плоскости раз навсегда выбрана некоторая аффинная система координат.

Рассматриваем сначала случай прямой d, параллельной одной из координатных осей. Если прямая d параллельна оси ординат, то (согласно замечанию на стр. 40) ее направляющими векторами являются все векторы вида и только они (здесь - произвольное число ). Точно так же ненулевые векторы вида и только эти векторы являются направляющими векторами любой прямой, параллельной оси абсцисс.

Пусть прямая d параллельна оси ординат и пересекает ось абсцисс в точке (рис. 63). Тогда все векторы ОМ, где М - произвольная точка прямой, при проектировании на ось абсцисс (вдоль оси ординат) переходят в один и тот же вектор для всех точек М нашей прямой (и только для них) имеем

Это и есть уравнение прямой, параллельной оси ординат. Аналогично прямая, параллельная оси абсцисс, имеет уравнение

(При этом параллельность понимается в широком смысле - сама ось ординат имеет уравнение , а ось абсцисс

Имеет место следующее простое предложение:

Для всех направляющих векторов данной прямой, не параллельной оси ординат, отношение ординаты вектора к его абсциссе имеет одно и то же постоянное значение k, называемое угловым коэффициентом данной прямой.

В самом деле, если - два направляющих вектора данной прямой d, то , т. е. одновременно

и, значит (так как ),

Замечание 1. Направляющий вектор прямой, параллельной оси ординат, имеет вид поэтому угловой коэффициент прямой, параллельной оси ординат, равен .

Угловой коэффициент прямой, параллельной оси абсцисс, есть 0,

Замечание 2. Всякий вектор , для которого отношение равно угловому коэффициенту k данной прямой d, есть направляющий вектор этой прямой.

Для прямых, параллельных какой-нибудь из осей координат, утверждение очевидно (так как тогда или и вектор , для которого , параллелен соответствующей оси координат). Пусть прямая d не параллельна ни одной из осей координат и есть какой-нибудь направляющий вектор этой прямой. Тогда , т. е. вектор и коллинеарен направляющему вектору их прямой d и, следовательно, сам является ее направляющим вектором.

Замечание 3. Если система координат прямоугольная, то для углового коэффициента k прямой d имеем , где а есть угол наклона любого направляющего вектора прямой d к оси абсцисс.

Найдем теперь уравнение прямой d, не параллельной оси ординат (система координат снова произвольная аффинная).

Обозначим угловой коэффициент прямой d через k, а точку ее пересечения с осью через (рис. 64).

Если произвольная точка прямой d, отличная от точки Q, то вектор есть направляющий вектор прямой d и, следовательно,

Другими словами, все точки прямой d удовлетворяют уравнению

Обратно, всякая точка , удовлетворяющая уравнению (1), лежит на прямой d: в самом деле, существует единственная точка М с абсциссой лежащая на прямой d, и эта точка, имея ту же абсциссу , что и точка удовлетворяет уравнению (1) и, значит, имеет ординату ту же, что и точка . Значит, т. е. точка лежит на прямой .

Итак, уравнению (1) удовлетворяют все точки прямой d и только они, а это и значит, что уравнение (1) есть уравнение прямой .

Пусть мы каким бы то ни было способом нашли уравнение вида (1), которому удовлетворяют все точки данной прямой d и только они.

Докажем, что тогда непременно есть ордината Q пересечения прямой d с осью ординат, a k есть угловой коэффициент этой прямой.

Первое утверждение очевидно: для нахождения точки Q пересечения прямой d с осью ординат надо в уравнение (1) подставить получаем , т. е. . Далее, при любом выборе отличной от Q точки прямой d вектор есть направляющий вектор этой прямой, и, следовательно, есть угловой коэффициент прямой .

Итак, существует единственное уравнение вида (1), являющееся уравнением данной прямой d (не параллельной оси ординат). Это уравнение - первой степени; так как и прямая, параллельная оси ординат, определяется уравнением первой степени , то мы доказали, что всякая прямая на плоскости определяется некоторым уравнением первой степени, связывающим координаты ее точек.

Докажем обратное предложение. Пусть

Произвольное уравнение первой степени относительно . Докажем, что оно является уравнением некоторой прямой.

Возможны два случая: или ВО.

С понятием прямой линии тесно связано понятие ее направляющего вектора. Часто в задачах бывает удобнее рассматривать его вместо самой прямой. В рамках данного материала мы разберем, что же такое направляющий вектор прямой в пространстве и на плоскости, и расскажем, для чего можно его использовать.

Yandex.RTB R-A-339285-1

В первом пункте мы сформулируем определение и покажем основные понятия на иллюстрациях, дополнив их конкретными примерами направляющего вектора. Далее мы посмотрим, как прямая и направляющие векторы взаимодействуют в прямоугольной системе координат и как можно вычислить координаты этого вектора, если мы знаем уравнение прямой. Все правила, как всегда, будут проиллюстрированы примерами решений задач.

Для того чтобы понять эту тему, нам нужно хорошо представлять, что такое вообще прямая и как она может размещаться в пространстве и на плоскости. Кроме того, важно вспомнить ранее изученное понятие вектора. Об этом мы уже писали в отдельном материале. Если нужно, найдите и перечитайте эти статьи.

Сформулируем, что такое направляющий вектор.

Определение 1

Направляющим вектором прямой является любой вектор, не равный нулю, который размещается на данной прямой или же на прямой, параллельной ей.

Получается, что у каждой прямой есть бесконечное множество направляющих векторов. При этом все они будут являться коллинеарными в силу озвученного определения, ведь они лежат на одной прямой или параллельной ей другой прямой. Выходит, что если a → является направляющий вектором прямой a , то другой направляющий вектор мы можем обозначить как t · a → при любом значении t , соответствующем действительному числу.

Также из определения выше можно сделать вывод, что направляющие векторы двух параллельных прямых будут совпадать: если прямые a и a 1 являются параллельными, то вектор a → будет направляющим и для a , и для a 1 .

Третий вывод, следующий из определения: если у нас есть направляющий вектор прямой a , то он будет перпендикулярным по отношению к любому нормальному вектору той же прямой.

Приведем пример направляющего вектора: в прямоугольной системе координат для осей O x , O y и O z направляющими будут координатные векторы i → , j → и k → .

Как вычислить координаты направляющего вектора по уравнениям прямой

Допустим, что у нас есть некая прямая с направляющими векторами, лежащая в прямоугольной системе координат. Сначала мы разберем случай с плоской декартовой системой O x y , а потом с системой O x y z , расположенной в трехмерном пространстве.

1. Прямую линию в O x y можно описать с помощью уравнения прямой на плоскости. В этом случае координаты направляющих векторов будут соответствовать направляющим векторам исходной прямой. А если нам известно уравнение прямой, как вычислить координаты ее направляющего вектора? Это легко сделать, если мы имеем дело с каноническим или параметрическим уравнением.

Допустим, у нас есть канонический случай уравнения, которое имеет вид x - x 1 a x = y - y 1 a y . С его помощью на плоскости задана прямая с направляющим вектором a → = (a x , a y) .

Чтобы вычислить координаты направляющего вектора, нам нужно взять числа из знаменателя канонического уравнения прямой.

Приведем пример задачи.

Пример 1

В прямоугольной системе координат задана прямая, которую можно описать уравнением x - 1 4 = y + 1 2 - 3 . Вычислите координаты одного из направляющих векторов прямой.

Решение

Из уравнения мы можем сразу взять координаты направляющего вектора. Берем числа в знаменателях и записываем: 4 , - 3 . Это и будет нужный нам ответ.

Ответ: 4 , - 3 .

Если же прямая описана уравнением параметрического типа, то нам нужно смотреть на коэффициенты при параметре. Они будут соответствовать координатам нужного нам направляющего вектора.

Пример 2

У нас есть прямая, которую можно описать с помощью системы параметрических уравнений x = - 1 y = 7 - 5 · λ , при этом λ ∈ R . Найдите координаты направляющих векторов.

Решение

Для начала перепишем данные параметрические уравнения в виде x = - 1 + 0 · λ y = 7 - 5 · λ . Посмотрим на коэффициенты. Они сообщат нам нужные координаты направляющего вектора – a → = (0 , 5) . Учитывая, что все направляющие векторы одной прямой будут коллинеарны, мы можем задать их в виде t · a → или 0 , - 5 · t , где t может быть любым действительным числом. О том, как проводить действия с векторами в координатах, мы писали в отдельной статье.

Ответ: 0 , - 5 · t , t ∈ R , t ≠ 0

Теперь разберем случай, как найти координаты вектора, если прямая задана общим уравнением вида A x + B y + C = 0 . Если A = 0 , то исходное уравнение можно переписать как B y + C = 0 . Оно определяет прямую, которая будет параллельна оси абсцисс. Значит, в качестве ее направляющего вектора мы можем взять координатный вектор i → = 1 , 0 .

А если B = 0 , то уравнение прямой мы можем записать как A x + C = 0 . Описываемая им прямая будет параллельна оси ординат, поэтому ее координатный вектор j → = 0 , 1 также будет направляющим. Рассмотрим конкретную задачу.

Пример 3

У нас есть прямая, заданная при помощи общего уравнения x - 2 = 0 . Найдите координаты любого направляющего вектора.

Решение

В прямоугольной системе координат исходное уравнение будет соответствовать прямой, параллельной оси ординат. Значит, мы можем взять координатный вектор j → = (0 , 1) . Он будет для нее направляющим.

Ответ: (0 , 1)

А как быть в случае, если ни один коэффициент в A x + B y + C = 0 не будет равен 0? Тогда мы можем использовать несколько разных способов.

1. Мы можем переписать основное уравнение так, чтобы оно превратилось в каноническое. Тогда координаты вектора можно будет взять из его значений.

2. Можно вычислить отдельно начальную и конечную точку направляющего вектора. Для этого надо будет взять координаты двух любых несовпадающих точек исходной прямой.

3. Третий способ заключается в вычислении координат любого вектора, который будет перпендикулярен нормальному вектору этой прямой n → = A , B .

Самым простым является первый подход. Проиллюстрируем его на примере задачи.

Пример 4

Есть прямая на плоскости, заданная уравнением 3 x + 2 y - 10 = 0 . Запишите координаты любого направляющего вектора.

Решение

Перепишем исходное уравнение в каноническом виде. Сначала перенесем все слагаемые из левой части, кроме 3 x, в правую с противоположным знаком. У нас получится:

3 x + 2 y - 10 = 0 ⇔ 3 x = - 2 y + 10

Получившееся равенство преобразовываем и получаем:

3 x = - 2 y + 10 ⇔ 3 x = - 2 (y - 5) ⇔ x - 2 = y - 5 3

Отсюда мы уже можем вывести координаты нужного нам направляющего вектора: -2 , 3

Ответ: -2 , 3

К общему виду легко свести и такие типы уравнений, как уравнение прямой в отрезках x a + y b = 1 и уравнение прямой с угловым коэффициентом y = k · x + b , так что если они встретились вам в задаче на нахождение координат направляющего вектора, то можно также использовать этот подход.

Определение 2

Вектор a → = (a x , a y , a z) является направляющим для прямой, выраженной с помощью:

1) канонического уравнения прямой в пространстве x - x 1 a x = y - y 1 a y = z - z 1 a z

2) параметрического уравнения прямой в пространстве x - x 1 a x = y - y 1 a y = z - z 1 a z

Таким образом, для вычисления координат направляющего вектора нужно взять числа из знаменателей или коэффициентов при параметре в соответствующем уравнении.

Рассмотрим конкретную задачу.

Пример 5

Прямая в пространстве задана уравнением вида x - 1 4 = y + 1 2 0 = z - 3 . Укажите, какие координаты будет иметь направляющий вектор данной прямой.

Решение

В каноническом уравнении необходимые числа видны сразу в знаменателях. Получается, что ответом будет вектор с координатами 4 , 0 , - 3 . Координаты всех направляющих векторов данной прямой можно записать в виде 4 · t , 0 , - 3 · t при условии, что t является действительным числом.

Ответ: 4 · t , 0 , - 3 · t , t ∈ R , t ≠ 0

Пример 6

Вычислите координаты любого направляющего вектора для прямой, которая задана в пространстве с помощью параметрического уравнения x = 2 y = 1 + 2 · λ z = - 4 - λ .

Решение

Перепишем данные уравнения в виде x = 2 + 0 · λ y = 1 + 2 · λ z = - 4 - 1 · λ .

Из этой записи можно вычленить координаты нужного нам вектора – ими будут коэффициенты перед параметром.

Ответ: 0 , 2 , - 1

Разберем еще один случай. Как вычислить нужные координаты, если прямая задана уравнением двух пересекающихся плоскостей вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 ?

Есть два способа. Можно записать это уравнение в параметрическом виде, где будут видны нужные координаты. Но можно использовать и другой способ. Объясним его.

Вспомним, что такой нормальный вектор плоскости. Он по определению будет лежать на прямой, перпендикулярной исходной плоскости. Значит, любой направляющий вектор прямой, которая в ней находится, будет перпендикулярен ее любому нормальному вектору.

Направляющий вектор прямой, образованной пересечением двух плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , будет перпендикулярен нормальным векторам n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) . То есть в качестве направляющего вектора мы может взять произведение векторов n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) .

n 1 → × n 2 → = i → j → k → A 1 B 1 C 1 A 2 B 2 C 2 - это и есть направляющий вектор прямой, по которой пересекаются исходные плоскости.

Решим задачу, в которой применяется этот подход.

Пример 7

Запишите координаты направляющего вектора прямой, выраженной с помощью уравнения x + 2 y + 3 z - 1 = 0 2 x + 4 y - 4 z + 5 = 0 .

Решение

Возьмем произведение двух нормальных векторов плоскостей x + 2 y + 3 z - 1 = 0 и 2 x + 4 y - 4 z + 5 = 0 . У них следующие координаты: 1 , 2 , 3 и 2 , 4 , - 4 .

У нас получится:

n 1 → × n 2 → = i → j → k → 1 2 3 2 4 - 4 = i → · 2 · (- 4) + j → · 3 · 2 + k → · 1 · 4 - - k → · 2 · 2 - i → · 3 · 4 - j → · 1 · (- 4) = - 20 · i → + 10 · j → + 0 · k →

Выходит, что вектор n 1 → × n 2 → = - 20 · i → + 10 · j → + 0 · k → ⇔ n 1 → × n 2 → = - 20 , 10 , 0 – это и есть нужный нам направляющий вектор прямой.

Ответ: - 20 , 10 , 0

В конце статьи отметим, что умение вычислять направляющий вектор пригодится для решения многих задач, таких, как сопоставление двух прямых, доказательство их параллельности и перпендикулярности, вычисление угла между пересекающимися или скрещивающимися прямыми и др.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter