Взрывоопасные вещества: классификация, примеры, применение и хранение. Взрывчатые вещества, их классификация и свойства

Терминология

Сложность и разнообразие химии и технологии ВВ, политические и военные противоречия в мире, стремление к засекречиванию любой информации в этой области привели к неустойчивым и разнообразным формулировкам терминов.

Промышленное применение

ВВ широко используются и в промышленности для производства различных взрывных работ . Ежегодный расход ВВ в странах с развитым промышленным производством даже в мирное время составляет сотни тысяч тонн. В военное время расход ВВ резко возрастает. Так, в период 1-й мировой войны в воюющих странах он составил около 5 миллионов тонн, а во 2-й мировой войне превысил 10 миллионов тонн. Ежегодное использование ВВ в США в 1990-х годах составляло около 2 миллионов тонн.

  • метательные
    Метательные ВВ (пороха и ракетные топлива) служат источниками энергии для метания тел (снарядов, мин, пуль и т. д.) или движения ракет. Их отличительная особенность - способность к взрывчатому превращению в форме быстрого сгорания, но без детонации.
  • пиротехнические
    Пиротехнические составы применяются для получения пиротехнических эффектов (светового, дымового, зажигательного, звукового и т. д.). Основной вид взрывчатых превращений пиротехнических составов - горение.

Метательные ВВ (пороха) применяются в основном в качестве метательных зарядов для различного рода оружия и предназначаются для придания снаряду (торпеде, пуле и т.д.) определенной начальной скорости. Преимущественным видом химического превращения их является быстрое сгорание, вызываемое лучом огня от средств воспламенения. Пороха делятся на две группы:

а) дымные;

б) бездымные.

Представителями первой группы могут служить черные пороха, представляющие собой смесь селитры, серы и угля, например артиллерийский и ружейный пороха, состоящие из 75% калиевой селитры, 10% серы и 15% угля. Температура вспышки дымных порохов равна 290 - 310° С.

Ко второй группе относятся пироксилиновые, нитроглицериновые, дигликолевые и другие пороха. Температура вспышки бездымных порохов равна 180 - 210° С.

Пиротехнические составы (зажигательные, осветительные, сигнальные и трассирующие), применяемые для снаряжения специальных боеприпасов, представляют собой механические смеси из окислителей и горючих веществ. При обычных условиях применения они, сгорая, дают соответствующий пиротехнический эффект (зажигательный, осветительный и т. д.). Многие из этих составов обладают также и взрывчатыми свойствами и при определенных условиях могут детонировать.

По методу приготовления зарядов

  • прессованные
  • литые (взрывчатые сплавы)
  • патронированные

По направлениям применения

  • военные
  • промышленные
  • для горного дела (добыча полезных ископаемых, производство стройматериалов, вскрышные работы)
    Промышленные ВВ для горных работ по условиям безопасного применения подразделяют на
  • непредохранительные
  • предохранительные
  • для строительства (плотин, каналов, котлованов, дорожных выемок и насыпей)
  • для сейсморазведки
  • для разрушения строительных конструкций
  • для обработки материалов (сварка взрывом, упрочнение взрывом, резание взрывом)
  • специального назначения (например, средства расстыковки космических аппаратов)
  • антисоциального применения (терроризм , хулиганство), при этом часто используются низкокачественные вещества и смеси кустарного изготовления.
  • опытно-экспериментальные.

По степени опасности

Существуют различные системы классификации ВВ по степени опасности. Наиболее известны:

  • Согласованная на глобальном уровне система классификации опасности и маркировки химической
  • Классификация по степени опасности в горных работах;

Сама по себе энергия взрывчатого вещества невелика. При взрыве 1 кг тротила выделяется в 6-8 раз меньше энергии, чем при сгорании 1 кг угля, но эта энергия при взрыве выделяется в десятки миллионов раз быстрее, чем при обычных процессах горения. Кроме того, уголь не содержит окислителя.

См. также

Литература

  1. Советская военная энциклопедия. М., 1978.
  2. Поздняков З. Г., Росси Б. Д. Справочник по промышленным взрывчатым веществам и средствам взрывания. - М.: «Недра», 1977. - 253 c.
  3. Fedoroff, Basil T. et al Enciclopedia of Explosives and Related Items, vol.1-7. - Dover, New Jersey: Picatinny Arsenal, 1960-1975.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Wikimedia Foundation . 2010 .

Взрывчатые вещества весьма разнообразны по своему химическому составу, физическим свойствам и агрегатному состоянию. Известно много BB, представляющих собой твердые тела, менее распространены жидкие, есть и газообразные, например смесь метана с воздухом.

В принципе взрывчатым веществом может быть любая смесь горючего с окислителем. Самое древнее BB - дымный порох - представляет собой смесь двух горючих (уголь и сера) с окислителем (калиевая селитра). Другой вид подобных смесей - оксиликвиты - представляет собой смесь тонкодисперсного горючего (сажа, мох, опилки и т. д.) с жидким кислородом.

Необходимым условием получения BB из горючего и окислителя является их тщательное смешение. Однако, как бы тщательно ни были перемешаны составные части взрывчатой смеси, невозможно добиться такой равномерности состава, при которой с каждой молекулой горючего соседствовала бы молекула окислителя. Поэтому в механических смесях скорость химической реакции при взрывном превращении никогда не достигает максимального значения. Такого недостатка не имеют взрывчатые химические соединения, в молекулу которых входят атомы горючего (углерода, водорода) и атомы окислителя (кислорода).

К взрывчатым химическим соединениям, молекула которых содержит атомы горючих элементов и кислорода, относятся сложные азотнокислые эфиры многоатомных спиртов, так называемые нитроэфиры, и нитросоединения ароматических углеводородов.

Наиболее широкое применение нашли следующие нитроэфиры: гли- церинтринитрат (нитроглицерин) - C 3 H 3 (ONO 2)3, пентаэритриттетранитрат (тэн) - C(CH 2 0N0 2) 4 , нитраты целлюлозы (нитроцеллюлоза) - [СбНѵ0 2 (ОН) 3 - п (ОШ 2) n]x.

Из нитросоединений в первую очередь следует назвать тринитротолуол (тротил) - C 6 H 2 (N0 2) 3 CH 3 и тринитрофенол (пикриновая кислота) - СбЩ№02)зОН.

Кроме указанных нитросоединений широко применяются нитроамины: тринитрофенилметилнитроамин (тетрил) - C 6 H 2 (N0 2) 3 NCH 3 N0 2 , цик- лотриметилентри-нитроамин (гексоген) - C3H 6 N 6 0 6 и циклотетраметилентетранитроамин (октоген) - C 4 H 8 N 8 0 8 . У нитросоединений и нитроэфиров все, тепло или основная часть тепла при взрыве выделяется в результате окисления горючих элементов кислородом.

Применяют также BB, выделяющие тепло при распаде молекул, на образование которых было затрачено большое количество энергии. Примером подобных BB является азид свинца - Pb(N 3) 2 .

Взрывчатые вещества, относящиеся по своей химической структуре к определенному классу соединений, обладают некоторыми общими свойствами.

Однако в пределах одного класса химических соединений различия в свойствах BB могут быть значительными, так как BB во многом определяются физическими свойствами и структурой вещества. Поэтому классифицировать BB по их принадлежности к определенному классу химических соединений довольно трудно.

Известно большое количество ВВ, отличающихся составом, природой, взрывчато-энергетическими характеристиками и физикомеханическими свойствами. Взрывчатые вещества классифицируются по следующим признакам:

По практическому применению;

По агрегатному состоянию;

По составу и др.

По практическому применению ВВ делят на три группы:

Инициирующие ВВ (ИВВ);

Бризантные ВВ (БВВ);

Метательные ВВ (МВБ).

ИВВ (лат. injtcere - возбуждать) применяются для инициирования (возбуждения) взрыва разрывных зарядов из БВВ или процесса горения метательных зарядов.

ИВВ характеризуется высокой чувствительностью к простым видам начального импульса (удар, трение, наклон, нагрев) и способностью взрываться в очень малых количествах (сотые, а иногда и тысячные доли грамма).

ИВВ называются первичными ВВ, так как они взрываются от простых начальных импульсов и используются для возбуждения максимально возможной скорости взрывчатого превращения (скорости детонации) вторичных зарядов ВВ.

БВВ (фр. brisant - разбивающий) применяются для совершения разрушительного действия разрывными зарядами боеприпасов и подрывных средств.

Возбуждение детонации БВВ осуществляется, как правило, от первичного заряда ИВВ, а поэтому БВВ называют вторичными ВВ.

БВВ характеризуются сравнительно невысокой чувствительностью к простым начальным импульсам, но достаточной восприимчивостью к взрывному импульсу, имеют высокие взрывчато-энергетические характеристики и способны детонировать при значительно большей массе и размерах заряда ВВ, чем ИВВ.

МВБ - пороха, твердые ракетные топлива. Рассматриваются отдельно.

По агрегатному состоянию ВВ разделяются на три группы:

Твердые (тротил, гексоген, тэн и др.);

Жидкие (нитроглицирин, нитродигликоль и др.);

Газообразные (смеси водорода и кислорода и др.)

Практическое применение для снаряжения боеприпасов нашли лишь

твердые ВВ. Жидкие ВВ используются в качестве компонентов порохов и РТТ, а также для смесевых ВВ, имеющих промышленное значение.

По составу как БВВ, так и ИВВ делятся на 2 группы:

Индивидуальные ВВ, представляющие собой отдельные химические соединения, например гремучая ртуть Hg (ONC) 2 , тротил С 6 Н 2 (Ш 2)зСНз и др.;

Смесевые ВВ, представляющие собой смеси и сплавы взрывчатых и невзрывчатых в отдельности веществ, например, тротил - гексоген; гегсоген - парафин; азид свинца - ТНРС и др.

Взрывчатые вещества - индивидуальные химические соединения или механические смеси разных по своей природе веществ, способные под влиянием внешнего воздействия (инициирующего импульса) к самораспространяющемуся химическому превращению с образованием газообразных продуктов и выделением большого количества тепла, нагревающего их до высокой температуры.

Основные химические компоненты ВВ:

Окислитель;

Горючее;

Добавки.

Окислитель - химические соединения богатые кислородом (нитраты аммония, натрия, калия и др., так называемые селитры - аммиачная, натриевая, калиевая и т.д.).

Горючее - химические соединения богатые водородом и углеродом (моторные масла, дизельное топливо, дерево, уголь и т.д.).

Добавки - химические соединения, обеспечивающие изменение каких-либо параметров взрывчатых веществ (сенсибилизаторы, флегматиза- торы, ингибиторы).

Сенсибилизаторы - вещества, обеспечивающие большую чувствительность ВВ (абразивные вещества - песок, кусочки породы, металлическая стружка; другие, более чувствительные ВВ и т.д.).

Флегматизаторы - вещества обеспечивающие понижение чувствительности ВВ (масла, парафины и т.д.) за счет теплопоглащающей способности.

Ингибиторы - вещества, обеспечивающие понижение пламени при взрыве ВВ (некоторые соли щелочных металлов и др.).

Еще по теме Основные типы взрывчатых веществ по составу и классификация их по применению:

  1. Условия безопасного применения взрывчатых веществ промышленного назначения
  2. Совершение преступления с использованием оружия, боевых припасов взрывчатых веществ, взрывных или имитирующих их устройств, специально изготовленных технических средств, ядовитых и радиоактивных веществ, лекарственных или иных химико-фармакологических аппаратов, а также с применением физического или психического принуждения.
  3. Долбенкин И.Н. и др.. Взрывчатые вещества промышленного изготовления: общие характеристики и способы применения [Текст] : учебно-практическое пособие / Долбенкин И.Н., Ипатов А.Л., Иваницкий Б.В., Ишутин А.В. - Домодедово: ВИПК МВД России,2015. - 79 с., 2015

ВЗРЫВЧАТЫЕ ВЕЩЕСТВА (а. explosives, blasting agents; н. Sprengstoffe; ф. explosifs; и. explosivos) — химические соединения или смеси веществ, способные в определённых условиях к крайне быстрому (взрывному) самораспространяющемуся химическому превращению с выделением тепла и образованием газообразных продуктов.

Взрывчатыми могут быть вещества или смеси любого агрегатного состояния. Широкое применение в получили так называемые конденсированные взрывчатые вещества, которые характеризуются высокой объёмной концентрацией тепловой энергии. В отличие от обычных топлив, требующих для своего горения поступления извне газообразного , такие взрывчатые вещества выделяют тепло в результате внутримолекулярных процессов распада или реакций взаимодействия между составными частями смеси, продуктами их разложения или газификации. Специфический характер выделения тепловой энергии и преобразования её в кинетическую энергию продуктов взрыва и энергию ударной волны определяет основную область применения взрывчатых веществ как средства дробления и разрушения твёрдых сред (главным образом ) и сооружений и перемещения раздробленной массы (см. ).

В зависимости от характера внешнего воздействия химические превращения взрывчатых веществ происходят: при нагреве ниже температуры самовоспламенения (вспышки) — сравнительно медленное термическое разложение; при поджигании — горение с перемещением зоны реакции (пламени) по веществу с постоянной скоростью порядка 0,1-10 см/с; при ударно-волновом воздействии — детонация взрывчатых веществ.

Классификация взрывчатых веществ . Имеется несколько признаков классификации взрывчатых веществ: по основным формам превращения, назначению и химическому составу. В зависимости от характера превращения в условиях эксплуатации взрывчатые вещества подразделяют на метательные (или ) и . Первые используют в режиме горения, например, в огнестрельном оружии и ракетных двигателях, вторые — в режиме , например, в боеприпасах и на . Бризантные взрывчатые вещества, применяемые в промышленности, называются . Обычно к собственно взрывчатым относят только бризантные взрывчатые вещества. В химическом отношении перечисленные классы могут комплектоваться одними и теми же соединениями и веществами, но по-разному обработанными или взятыми при смешении в разном соотношении.

По восприимчивости к внешним воздействиям бризантные взрывчатые вещества подразделяют на первичные и вторичные. К первичным относят взрывчатые вещества, способные взрываться в небольшой массе при поджигании (быстрый переход горения в детонацию). Они также значительно более чувствительны к механическим воздействиям, чем вторичные. Детонацию вторичных взрывчатых веществ легче всего вызвать (инициировать) ударно-волновым воздействием, причём давление в инициирующей ударной волне должно быть порядка несколько тысяч или десятков тысяч МПа. Практически это осуществляют с помощью небольших масс первичных взрывчатых веществ, помещённых в , детонация в которых возбуждается от луча огня и контактно передаётся вторичному взрывчатому веществу. Поэтому первичные взрывчатые вещества называются также . Другие виды внешнего воздействия (поджигание, искра, удар, трение) лишь в особых и труднорегулируемых условиях приводят к детонации вторичных взрывчатых веществ. По этой причине широкое и целенаправленное использование бризантных взрывчатых веществ в режиме детонации в гражданской и военной взрывной технике было начато лишь после изобретения капсюля-детонатора как средства инициирования детонации во вторичных взрывчатых веществах.

По химическому составу взрывчатые вещества подразделяют на индивидуальные соединения и взрывчатые смеси. В первых химические превращения при взрыве происходят в форме реакции мономолекулярного распада. Конечные продукты — устойчивые газообразные соединения, такие, как , окись и двуокись , пары воды.

Во взрывчатых смесях процесс превращения состоит из двух стадий: распада или газификации компонентов смеси и взаимодействия продуктов распада (газификации) между собой или с частицами неразлагающихся веществ (например, металлов). Наиболее распространённые вторичные индивидуальные взрывчатые вещества относятся к азотсодержащим ароматическим, алифатическим гетероциклическим органическим соединениям, в том числе нитросоединениям ( , ), нитроаминам ( , ), нитроэфирам ( , ). Из неорганических соединений слабыми взрывчатыми свойствами обладает, например, аммиачная селитра.

Многообразие взрывчатых смесей может быть сведено к двум основным типам: состоящие из окислителей и горючих, и смеси, в которой сочетание компонентов определяет эксплуатационные или технологические качества смеси. Смеси окислитель — горючее рассчитаны на то, что значительная часть тепловой энергии выделяется при взрыве в результате вторичных реакций окисления. В качестве компонентов этих смесей могут быть как взрывчатые, так и невзрывчатые соединения. Окислители, как правило, при разложении выделяют свободный кислород, который необходим для окисления (с выделением тепла) горючих веществ или продуктов их разложения (газификации). В некоторых смесях (например, содержащиеся в качестве горючего металлические порошки) в качестве окислителей могут быть также использованы вещества, выделяющие не кислород, а кислородсодержащие соединения (пары воды, углекислый газ). Эти газы реагируют с металлами с выделением тепла. Пример такой смеси — .

В качестве горючих применяют различного рода природные и синтетические органические вещества, которые при взрыве выделяют продукты неполного окисления (окись углерода) или горючие газы ( , ) и твёрдые вещества (сажу). Наиболее распространённым видом бризантных взрывчатых смесей первого типа являются взрывчатые вещества, содержащие в качестве окислителя нитрат аммония. В зависимости от вида горючего они, в свою очередь, подразделяются на , аммотолы и аммоналы. Менее распространены хлоратные и перхлоратные взрывчатые вещества, в состав которых в качестве окислителей входят хлорат калия и перхлорат аммония, оксиликвиты — смеси жидкого кислорода с пористым органическим поглотителем, смеси на основе других жидких окислителей. К взрывчатым смесям второго типа относятся смеси индивидуальных взрывчатых веществ, например динамиты; смеси тротила с гексогеном или тэном (пентолит), наиболее пригодные для изготовления .

В смеси обоих типов, кроме указанных компонентов, в зависимости от назначения взрывчатых веществ могут вводиться и другие вещества для придания взрывчатому веществу каких-либо эксплуатационных свойств, например, повышающие восприимчивость к средствам инициирования, или, напротив, снижающие чувствительность к внешним воздействиям; гидрофобные добавки — для придания взрывчатому веществу водостойкости; пластификаторы, соли-пламегасители — для придания предохранительных свойств (см. Предохранительные взрывчатые вещества). Основные эксплуатационные характеристики взрывчатых веществ (детонационные и энергетические характеристики и физико-химические свойства взрывчатых веществ) зависят от рецептурного состава взрывчатых веществ и технологии изготовления.

Детонационная характеристика взрывчатых веществ включает детонационную способность и восприимчивость к детонационному импульсу. От них зависят безотказность и надёжность взрывания. Для каждого взрывчатого вещества при данной плотности имеется такой критический диаметр заряда, при котором детонация устойчиво распространяется по всей длине заряда. Мерой восприимчивости взрывчатых веществ к детонационному импульсу служат критическое давление инициирующей волны и время его действия, т.е. величина минимального инициирующего импульса. Её часто выражают в единицах массы какого-либо инициирующего взрывчатого вещества или вторичного взрывчатого вещества с известными параметрами детонации. Детонация возбуждается не только при контактном подрыве инициирующего заряда. Она может передаваться и через инертные среды. Это имеет большое значение для , состоящих из нескольких патронов, между которыми возникают перемычки из инертных материалов. Поэтому для патронированных взрывчатых веществ проверяется показатель передачи детонации на расстояние через различные среды (обычно через воздух).

Энергетические характеристики взрывчатых веществ. Способность взрывчатых веществ при взрыве производить механическую работу определяется запасом энергии, высвобождаемой в виде тепла при взрывчатом превращении. Численно эта величина равна разности между теплотой образования продуктов взрыва и теплотой образования (энтальпией) самого взрывчатого вещества. Поэтому коэффициент преобразования тепловой энергии в работу у металлсодержащих и предохранительных взрывчатых веществ, образующих при взрыве твёрдые продукты (окислы металлов, соли-пламегасители) с высокой теплоёмкостью, ниже, чем у взрывчатых веществ, образующих только газообразные продукты. О способности взрывчатых веществ к местному дробящему или бризантному действию взрыва см. в ст. .

Изменение свойств взрывчатых веществ может происходить в результате физико-химических процессов, влияния температуры, влажности, под воздействием нестойких примесей в составе взрывчатых веществ и др. В зависимости от вида укупорки устанавливают гарантийный срок хранения или использования взрывчатых веществ, в течение которого нормированные показатели взрывчатых веществ либо не должны изменяться, либо их изменение происходит в пределах установленного допуска.

Основной показатель безопасности в обращении с взрывчатыми веществами — их чувствительность к механическим и тепловым воздействиям. Она обычно оценивается экспериментально в лабораторных условиях по специальным методикам. В связи с массовым внедрением механизированных способов перемещения больших масс сыпучих взрывчатых веществ к ним предъявляются требования минимальной электризации и низкой чувствительности к разряду статического электричества.

Историческая справка . Первым из взрывчатых веществ был изобретенный в Китае (7 в.) чёрный (дымный) порох. В Европе он известен с 13 в. С 14 в. порох применяли в качестве метательного средства в огнестрельном оружии. В 17 в. (впервые на одном из рудников Словакии) порох использовали на взрывных работах в горном деле, а также для снаряжения артиллерийских гранат (разрывных ядер). Взрывчатое превращение чёрного пороха возбуждалось поджиганием в режиме взрывного горения. В 1884 французским инженером П. Вьелем был предложен бездымный порох. В 18-19 вв. был синтезирован ряд химических соединений, обладающих взрывчатыми свойствами, в том числе пикриновая кислота, пироксилин, нитроглицерин, тротил и др., однако их использование в качестве бризантных детонирующих взрывчатых веществ стало возможным только после открытия русским инженером Д. И. Андриевским (1865) и шведским изобретателем А. Нобелем (1867) гремучертутного запала (капсюля-детонатора). До этого в России по предложению Н. Н. Зинина и В. Ф. Петрушевского (1854) нитроглицерин использовался при подрывах взамен чёрного пороха в режиме взрывного горения. Сама гремучая ртуть была получена ещё в конце 17 в. и повторно английским химиком Э. Хоуардом в 1799, но способность её детонировать тогда не была известна. После открытия явления детонации бризантные взрывчатые вещества получили широкое применение в горном и военном деле. Среди промышленных взрывчатых веществ первоначально по патентам А. Нобеля наибольшее распространение получили гурдинамиты, затем пластичные динамиты, порошкообразные нитроглицериновые смесевые взрывчатые вещества. Аммиачно-селитренные взрывчатые вещества были запатентованы ещё в 1867 И. Норбином и И. Ольсеном (Швеция), но их практическое использование в качестве промышленных взрывчатых веществ и для снаряжения боеприпасов началось лишь в годы 1-й мировой войны 1914-18. Более безопасные и экономичные, чем динамиты, они в 30-х годах 20 века начали всё в больших масштабах применяться в промышленности.

После Великой Отечественной войны 1941-45 аммиачно-селитренные взрывчатые вещества, вначале преимущественно в виде тонкодисперсных аммонитов, стали доминирующим видом промышленных взрывчатых веществ в CCCP. В других странах процесс массовой замены динамитов на аммиачно-селитренные взрывчатые вещества начался несколько позже, примерно с середины 50-х гг. С 70-х гг. основные виды промышленных взрывчатых веществ — гранулированные и водосодержащие аммиачно-селитренные взрывчатые вещества простейшего состава, не содержащие нитросоединений или других индивидуальных взрывчатых веществ, а также смеси, содержащие нитросоединения. Тонкодисперсные аммиачно-селитренные взрывчатые вещества сохранили своё значение главным образом для изготовления патронов-боевиков, а также для некоторых специальных видов взрывных работ. Индивидуальные взрывчатые вещества, в особенности тротил, широко применяются для изготовления шашек-детонаторов, а также для длительного заряжания обводнённых скважин, в чистом виде () и в высоководоустойчивых взрывчатых смесях, гранулированных и суспензионных (водосодержащих). Для в глубоких применяют и .

Взрывчатыми веществами (ВВ) называются неустойчивые химические соединения или смеси, чрезвычайно быстро переходящие под воздействием определенного импульса в другие устойчивые вещества с выделением значительного количества тепла и большого объема газообразных продуктов, которые находятся под очень большим давлением и, расширяясь, выполняют ту или иную механическую работу.

Современные взрывчатые вещества представляют собой или химические соединения (гексоген, тротил и др .), или механические смеси (аммиачно-селитренные и нитроглицериновые ВВ ).

Химические соединения получаются обработкой азотной кислотой (нитрованием) различных углеводородов, т. е. введением в молекулу углеводорода таких веществ, как азот и кислород.

Механические смеси изготовляются смешением веществ, богатых кислородом, с веществами, богатыми углеродом.

В обоих случаях кислород находится в связанном состоянии с азотом или хлором (исключение составляют оксиликвиты , где кислород находится в свободном несвязанном состоянии).

В зависимости от количественного содержания кислорода во взрывчатом веществе окисление горючих элементов в процессе взрывчатого превращения может быть полным или неполным , а иногда кислород может даже оставаться в избытке. В соответствии с этим различают взрывчатые вещества с избыточным (положительным), нулевым и недостаточным (отрицательным) кислородным балансом .

Наиболее выгодными являются взрывчатые вещества, имеющие нулевой кислородный баланс, так как углерод полностью окисляется до СО 2 , а водород до Н 2 О, в результате чего выделяется максимально возможное для данного взрывчатого вещества количество тепла. Примером такого взрывчатого вещества может служить динафталит , представляющий собой смесь аммиачной селитры и динитронафталина:

При избыточном кислородном балансе остающийся неиспользованным кислород вступает в соединение с азотом, образуя весьма ядовитые окислы азота, которые поглощают часть тепла, что уменьшает количество энергии, выделяемой при взрыве. Примером взрывчатого вещества с избыточным кислородным балансом является нитроглицерин :

С другой стороны, при недостаточном кислородном балансе не весь углерод переходит в углекислый газ; часть его окисляется только до окиси углерода. (СО) которая также ядовита, хотя и в меньшей степени, чем окислы азота. Кроме того, часть углерода может остаться в твердом виде. Оставшийся твердым углерод и неполное его окисление только до СО ведут к уменьшению выделяемой при взрыве энергии.

Действительно, при образовании одной грамм-молекулы окиси углерода выделяется тепла только 26 ккал/моль, тогда как при образовании грамм-молекулы углекислого газа 94 ккал/моль.

Примером взрывчатого вещества с отрицательным кислородным балансом может служить тротил :

В реальных условиях, когда продукты взрыва совершают механическую работу, происходят дополнительные (вторичные) химические реакции и действительный состав продуктов взрыва несколько отличается от приведенных расчетных схем, а количество ядовитых газов в продуктах взрыва изменяется.

Классификация взрывчатых веществ

Взрывчатые вещества могут находиться в газообразном, жидком и твердом.состоянии или в виде смесей твердых или жидких веществ с твердыми или газообразными веществами.

В настоящее время, когда число различных взрывчатых веществ весьма велико (тысячи наименований), деление их только по физическому состоянию совершенно недостаточно. Такое деление ничего не говорит ни о работоспособности (мощности) взрывчатых веществ, по которой можно было бы судить об области применения того или иного из них, ни о свойствах взрывчатых веществ, по которым можно было бы судить о степени опасности их в обращении и при хранении. Поэтому в настоящее время приняты три другие классификации взрывчатых веществ.

По первой классификации все взрывчатые вещества делятся по их мощности и области применения на:.

А) повышенной мощности (тэн, гексоген, тетрил);

Б) нормальной мощности (тротил, пикриновая кислота, пластиты," тетритол, скальные аммониты, аммониты, содержащие 50-60% тротила, и студенистые нитроглицериновые ВВ);

В) пониженной мощности (аммиачно-селитренные В В, кроме упомянутых выше, порошкообразные нитроглицериновые ВВ и хлоратиты).

3. Метательные взрывчатые вещества (дымные пороха и бездымные пироксилиновые и нитроглицериновые пороха).

В этой классификации приведены, конечно, не все наименования взрывчатых веществ, а только те из них, которые преимущественно применяются на взрывных работах. В частности, под общим наименованием аммиачно-селитренных ВВ содержатся десятки различных составов, имеющих каждый свое отдельное название.

Вторая классификация делит взрывчатое вещество по их химическому составу:

1. Нитросоединения ; в веществах этого вида содержатся две - четыре нитрогруппы (NO 2); к ним относятся тетрил, тротил, гексоген, тетритол, пикриновая кислота и динитронафталин, входящий в составы некоторых аммиачно-селитренных взрывчатых веществ.

2. Нитроэфиры ; в веществах этого вида содержится несколько нитратных групп (ONO 2). К ним относятся тэн, нитроглицериновые ВВ и бездымные пороха.

3. Соли азотной кислоты - вещества, содержащие группу NO 3 , основным представителем которых является аммиачная (аммонийная) селитра NH 4 NO 3 , входящая в состав всех аммиачно-селитренных взрывчатых веществ. К этой группе также относятся калиевая селитра KNO 3 - основа дымных порохов, и натриевая селитра NaNO 3 , входящая в состав нитроглицериновых ВВ.

4. Соли азотистоводородной кислоты (HN 3), из которых применяется только азид свинца.

5. Соли гремучей кислоты (HONC), из которых применяется только гремучая ртуть.

6. Соли хлорноватой кислоты, так называемые хлоратиты и перхлоратиты , - взрывчатые вещества, в которых основным компонентом - носителем кислорода является хлорат или перхлорат калия (КСlO 3 и КСlO 4); сейчас они применяются очень редко. Обособленно от этой классификации находится взрывчатое вещество, называемое оксиликвитом .

По химической структуре взрывчатого вещества можно судить и об основных его свойствах:

Чувствительности, стойкости, составе продуктов взрыва, следовательно, о мощности вещества, взаимодействии его с другими веществами (например, с материалом оболочки) и ряде других свойств.

От характера связи нитрогрупп с углеродом (в нитросоединениях и нитроэфирах) зависят чувствительность взрывчатого вещества к внешним воздействиям и их стойкость (сохранение взрывчатых свойств) в условиях хранения. Например, нитросоединеиия, в которых азот группы NO 2 связан непосредственно с углеродом (С-NO 2), менее чувствительны и более стойки, чем нитроэфиры, у которых азот связан с углеродом через один из кислородов группы ONO 2 (С-О-NO 2); такая связь менее прочна и делает ВВ более чувствительным и менее стойким.

Число нитрогрупп, содержащихся в составе ВВ, характеризует мощность последнего, а также степень его чувствительности к внешним воздействиям. Чем больше нитрогрупп в молекуле ВВ, тем оно мощнее и чувствительнее. Так, например, мононитротолуол (имеющий только одну нитрогруппу) является маслянистой жидкость, не обладающей взрывчатыми свойствами; динитротолуол , содержащий две нитрогруппы, - уже взрывчатое вещество, но со слабыми взрывчатыми характеристиками; и, наконец, тринитротолуол (тротил) , имеющий три нитрогруппы, представляет собой вполне удовлетворительное по мощности взрывчатое вещество.

Динитросоединения применяются ограниченно; в большинстве современных взрывчатых веществ содержатся три или четыре нитрогруппы.

Присутствие некоторых других групп в составе ВВ также влияет на его свойства. Например, дополнительный азот (N 3) в гексогене повышает чувствительность последнего. Метильная же группа (СН 3) в тротиле и тетриле способствует тому, что эти ВВ не взаимодействуют с металлами, тогда как гидроксильная группа (ОН) в пикриновой кислоте является причиной легкого взаимодействия вещества с металлами (кроме олова) и появления так называемых пикратов того или иного металла, которые представляют собой взрывчатые вещества, весьма чувствительные к удару и трению.

Взрывчатые вещества, полученные путем замещения водорода металлом в азотистоводородной или гремучей кислоте, обусловливают крайнюю непрочность внутримолекулярных связей и, следовательно, особую чувствительность этих веществ к механическим и тепловым внешним воздействиям.

На взрывных работах в быту принята третья классификация взрывчатых веществ:- по допустимости их использования в тех или иных условиях .

По этой классификации различают следующие три основные группы:

1. ВВ, допущенные для открытых работ.

2. ВВ, допущенные для подземных работ в условиях, безопасных по возможности взрыва рудничного газа и угольной пыли.

3. ВВ, допущенные только для условий, опасных по возможности взрыва газа или пыли (предохранительные ВВ).

Критерием отнесения взрывчатого вещества к той или иной группе служат количество выделяющихся при взрыве ядовитых (вредных) газов и температура продуктов взрыва. Так, тротил из-за большого количества образующихся при его взрыве ядовитых газов может применяться только на открытых работах (строительство и карьерная добыча полезных ископаемых ), тогда как аммиачно-селитренные ВВ допускаются и на открытых, и в подземных работах в условиях, неопасных по газу и пыли. Для подземных же работ, где возможно наличие взрывающихся газо- и пылевоздушных смесей, допускаются только ВВ, имеющие пониженную температуру продуктов взрыва.

ВЗРЫВЧАТЫЕ ВЕЩЕСТВА. 1.1 Общие сведения о взрывчатых веществах

1.1 Общие сведения о взрывчатых веществах

Взрывчатые вещества представляют собой индивидуальные соединения или смеси, способные к быстрому, самораспространяющемуся химическому превращению (взрыву) с образованием большого количества газов и тепла. ВВ могут быть твердыми, жидкими и газо-образными.

Для взрыва характерны:

Большая скорость химического превращения (до 8–9 км/с);

Экзотермичность реакции (порядка 4180–7520 кДж/кг);

Образование большого количества газообразных продуктов (300-1000 л/кг);

Самораспространение реакции.

Невыполнение хотя бы одного из указанных условий исключает протекание взрыва.

Быстрое образование больших объемов газов и нагрев последних за счет теплоты реакций до высоких температур обусловливает внезапное развитие в месте взрыва больших давлений. Энергия сжатых газообразных продуктов взрыва является источником механической работы при различных видах применения взрывчатых веществ. В отли-чие от сгорания обычных топлив реакция взрыва ВВ протекает без участия кислорода воздуха и вследствие больших скоростей процесса позволяет получить в небольшом объеме огромные мощности.

Так, сгорание 1 кг угля требует около 11 м 3 воздуха, при этом выделяется приблизительно 33440 кДж. Сгорание (взрыв) 1 кг гексогена, занимающего объем 0,65 л, происходит за 0,00001 с и сопровождается выделением 5680 кДж, что соответствует мощности 500 млн кВт.

Такое химическое превращение называют взрывчатым превращением (взрывом). В нем всегда наблюдается две стадии:

Первая – превращение скрытой химической энергии в энергию сжатого газа;

Вторая – расширение образовавшихся газообразных продуктов, которые и совершают работу.

По механизму распространения и по скорости протекания химической реакции различают два вида взрывчатого превращения: горение и взрыв (детонация).

Горение – относительно медленный процесс. Передача тепла идет от более прогретого слоя в глубину к менее прогретому слою путем теплопроводности. Скорость горения зависит от условий, при которых протекает химическая реакция. Например, при повышении давления скорость горения увеличивается. В некоторых случаях горение может перейти во взрыв.

Взрыв – скоротечный процесс, протекающий со скоростью до
9 км/с. Энергия при взрыве передается образующейся ударной волной – областью сильно сжатого вещества (волной сжатия).

Механизм взрыва можно представить следующим образом. Взрывчатое превращение, возбужденное в первом слое ВВ посторонним возбудителем, резко сжимает второй (последующий) слой, то есть образует в нем ударную волну. Последняя вызывает взрывчатое превращение в этом слое. Затем ударная волна достигает третьего слоя и также возбуждает в нем взрывчатые превращения, затем – четвертого и т.д. В процессе распространения энергия ударной волны уменьшается, это выражается в уменьшении силы сжатия от слоя к слою. Когда сжатие будет недостаточным, взрыв перейдет в горение. Однако возможен и другой случай. Энергия, выделяющаяся в результате взрывчатого превращения в очередном слое, достаточна для компенсации потери энергии в ударной волне при прохождении этого слоя. В таком случае взрыв переходит в детонацию.

Детонация – частный случай взрыва, протекающего с постоянной скоростью (скоростью распространения ударной волны) для данного вещества. Детонация не зависит от внешних условий, и ее скорость распространения является важным параметром взрывчатого вещества. Вид взрывчатого превращения заданного ВВ зависит от свойства вещества и от внешних условий. Например, взрывчатое вещество тротил в обычных условиях горит, если же он находится в закрытом объеме, то горение может перейти во взрыв и детонацию. Порох на открытом воздухе горит, но если зажечь пороховую пыль, то она может сдетонировать. Поэтому, независимо от назначения взрывчатых веществ и их чувствительности к различным импульсам, с ними следует обращаться осторожно, с обязательным выполнением требований техники безопасности.