Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод

Квантовый электромагнитный резонатор

Квантовый электромагнитный резонатор (КвЭР) (Quantum Electromagnetic Resonator ) – замкнутой топологический объект в трехмерном пространстве, в общем случае ‘’полость’’ произвольной формы, которая имеет определенную ‘’поверхность’’ с определенной ‘’толщиной’’. В противоположность классическому случаю, в ней отсутствуют ‘’электромагнитные волны’’ и потери на излучение, но имеют место “нескончаемые” колебания фазово смещенного электромагнитного поля, которые вытекают из квантовых свойств КвЭР.

История вопроса

Так сложилось исторически, что физические реактивные величины такие, как емкость и индуктивность практически не рассматривались не только в квантовой , но даже и в классической теоретической электродинамике . Дело в том, что последние не входят в явном виде в систему уравнений Максвелла , в результате решения которой всегда получались электромагнитные поля, и если иногда в получаемых решениях и возникали размерные коэффициенты, которые можно было связать с емкостью или индуктивностью, то и отношение к ним было соответствующее. Не менее известно также, что «полевой подход» приводит к появлению «дурных бесконечностей», обусловленных рассмотрением движения «математической точки» (с электрическим зарядом) под воздействием силовых полей. Не избежала «дурных бесконечностей» и общепризнанная квантовая электродинамика , в рамках которой были также разработаны мощные методы «компенсации дурных бесконечностей».

Напротив, в прикладной физике понятие емкости и индуктивности нашло широкое применение, сначала в электротехнике , а потом в радиоэлектронике . Основным результатом применения реактивных параметров в прикладной физике является сегодня широкое распространение информационных технологий , которые базируются на генерации, приеме и передаче электромагнитных волн на различной частоте. В тоже время неразработанность на теоретическом уровне физических понятий для емкости и индуктивности сегодня уже становится в определенной мере сдерживающим фактором в развитии информационных технологий вообще и квантового компьютинга в частности. Достаточно вспомнить, что квантовое рассмотрение классического механического осциллятора было реализовано в эпоху создания квантовой механики (как одна из иллюстраций ее практического применения), тогда как квантовое рассмотрение контура было теоретически поставлено только в начале 70-х годов 20-го века а детальное рассмотрение началось только в средине 90-х годов.

Впервые необходимость решения уравнения Шредингера для квантового контура была поставлена в монографии Луизелла (1973) . Поскольку тогда еще не было понимания, что собой представляют квантовые реактивные параметры (да и практических примеров тогда не было), то поэтому широкого распространения данный подход не получил. Теоретически корректное введение квантовой емкости, которое базировалось на плотности состояний впервые введено Лурием (1988) при рассмотрении квантового эффекта Холла (КЭХ). К сожалению тогда не были введены квантовые индуктивности, которые также вытекали из плотности состояний, и поэтому полноценного рассмотрения квантового реактивного осциллятора и тогда не произошло. Годом позже Якимаха (1989) рассмотрел пример последовательно-параллельного соединения квантовых контуров (вернее их импедансов) при объяснении КЭХ (целочисленного и дробного). Но в этой работе не рассматривалась физическая сущность этих квантовых реактивных параметров а также не рассматривалось и квантовое уравнение Шредингера для реактивного осциллятора. Впервые одновременное рассмотрение всех квантовых реактивных параметров было осуществлено в работе Якимахи (1994) , при спектроскопических исследованиях МДП-транзисторов на низких частотах (звуковой диапазон). Плоские квантовые емкости и индуктивности здесь имели толщину равную Комптоновской длине волны электрона, а характеристическое сопротивление – волновому сопротивлению вакуума . Тремя годами позже Деворет (1997) представил полную теорию квантового реактивного осциллятора (применительно к эффекту Джозефсона). Применение квантовых реактивных параметров в квантовом компьютинге освещено в работе Деворет (2004) .

Классический электромагнитный резонатор

В общем случае классический электромагнитный резонатор (КлЭР) являет собою полость в 3D-просторанстве. Поэтому КлЭР имеет бесконечное количество резонансных частот, обусловленных трехмерностью пространства. Например, прямоугольный КлЭР имеет следующие резонансные частоты:

где ; соответственно ширина, толщина и длина, диэлектрическая постоянная, относительная проницаемость, магнитная постоянная, относительная восприимчивость. В противоположность до классического LC контура, в КлЭР электрические и магнитные поля размещены в одном и том же объеме пространства. Эти осциллирующие электромагнитные поля в классическом случае формируют электромагнитные волны , которые могут быть излучены во внешний мир за пределы резонатора. Сегодня КлЭР широко используются в радиочастотном диапазоне волн (сантиметры и дециметры). Более того, КлЭР также используется в квантовой электронике, которая имеет дело с монохромными световыми волнами.

Квантовый подход

Квантовый LC контур

В классической физике мы имеем следующие соотношения соответствия между механическими и электродинамическими физическими параметрами:

магнитной индуктивностью и механической массой :

;

электрической емкостью и обратной упругостью :

;

электрическим зарядом и смещением координаты :

.

Квантовый оператор импульса в зарядовом пространстве может быть представлен в следующем виде:

где приведенная постоянная Планка, is the complex- комплексно сопряженный оператор импульса. Оператор Гамильтона в зарядовом пространстве может быть представлен как:

где комплексно сопряженный зарядовый оператор, и резонансная частота. Рассмотрим случай без диссипации энергии (). Единственное отличие между зарядовым пространством и традиционным 3D- координатным просторанством состоит в его одномерности (1D). Уравнение Шредингера для квантового LC контура может быть определено как:

Для решения этого уравнения необходимо ввести следующие безразмерные переменные:

где масштабный "заряд". Тогда уравнение Шредингера принимает форму дифференциального уравнения Чебышева-Эрмита:

Собственные значения для оператора Гамильтона будут:

где при будем иметь нулевые осцилляции :

В общем случае масштабный заряд может быть переписан в форме:

где постоянная тонкой структуры. Очевидно, что масштабный заряд отличается от "металлургического" заряда электрона. Более того, его квантизация будет иметь вид:

.

Резонатор, как квантовый LC контур

Подход Лурия с использованием плотности энергетических состояний (ПЭС), дает следующее определение для квантовой емкости:

и квантовой индуктивности:

где площадь поверхности резонатора, и ПЭС в двухмерном пространстве (2D), электрический заряд (или поток), и магнитный заряд (или поток). Необходимо отметить, что эти потоки будут определены позже с помощью дополнительных условий.

Энергия накопленная на квантовой емкости:

Энергия накопленная на квантовой индуктивности:

Угловая частота резонатора:

Закон сохранения энергии:

Это уравнение может быть переписано как:

с которого видно, что эти „заряды” есть в действительности „потоки поля”, а не „металлургические заряды”.

Характеристический импеданс резонатора:

где квант магнитного потока.

Из приведенных выше уравнений мы можем найти следующие значения электрического и магнитного потоков поля:

Необходимо еще раз напомнить, что эти величины не являются „металлургическими зарядами”, но максимальными амплитудными значениями потоков поля, которые поддерживают энергетический баланс между энергией осцилляций резонатора и полной энергией на емкости и индуктивности.

ЭВОЛЮЦИЯ ЭЛЕКТРОМАГНИТНЫХ РЕЗОНАТОРОВ

Резонатор может долгое время поддерживать периодические колебания, вызванные внешним импульсом. Резонатор обладает частотной избирательностью по отношению к внешнему гармоническому воздействию: амплитуда его колебаний максимальна на резонансной частоте и уменьшается по мере удаления от нее. Колебания в электромагнитных резонаторах представляют собой взаимное превращение электрического и магнитного полей. Резонаторы широко используются в радиотехнических устройствах, являясь неотъемлемой частью многих усилителей, большинства генераторов, приемников, частотных фильтров и измерителей частоты.

Простейшим электромагнитным резонатором является (колебательный LC-контур. Легко установить, что задас электрической энергии создается в конденсаторе, а запас магнитной - в катушке индуктивности. Переход энергии от электрического поля к магнитному сопровождается пространственным перемещением энергии из конденсатора в индуктивность. Размеры контура должны быть малы по сравнению с длиной волны. Уже в метровом диапазоне волн контур перестает работать удовлетворительно: сказываются межвигковые емкости катушек, индуктивности вводов и пластин конденсатора. Увеличение частоты требует уменьшения размеров катушки и конденсатора, что влечет за собой снижение допустимой колебательной мощности.

В диапазоне дециметровых и более коротких волн (частично и метровом диапазоне) применяют резонаторы, в которых электромагнитные колебания возникают внутри ограниченного объема; поэтому их называют объемными.

Постепенное превращение контура в объемный резонатор показано на рис. 11.1. Пусть контур (рис. 11.1а) рассчитан на весьма высокую частоту и имеет всего один виток. Включение параллельно ему еще нескольких витков (рис. 11.16) увеличивает частоту колебаний этой системы и уменьшает вредное излучение в пространство. Объединение всех витков в сплошную поверхность вращения (рис. 11.1 в) приводит к полностью экранированному тороидальному резонатору с еще более вышкой частотой колебаний; этот резонатор относится к классу квазистационарных.

Кваэистационарные резонаторы имеют четко выраженные области существования электрического и магнитного полей, которые эквивалентны емкости и индуктивности; можно считать, что такой резойатор представляет собой полностью экранированный колебательный контур. Размеры квазистацнонарного резонатора малы по сравнению с длиной волны его собственных колебаний.

Раздвинув пластины (конденсатора, превратим границу резонатора в выпуклую поверхность, например, сферическую (рис. 11.1 г). Собственная частота три этом еще более увеличится и длина волны станет сравнимой с размерами резонатора. Теперь весь объем резонатора почти в равной степени заполнен электрическим и магнитным нолями, поэтому удаетая выделить отдельные области со свойствами емкости и индуктивности. Поле в объемном резонаторе такого тина можно представить в виде суммы парциальных волн, последовательно отражающихся от его стенок. Резонанс возникает в том случае, если циркулирующая внутри резонатора волна приходит определенную точку всегда в одной и той же фазе. Такое синфазное сложение полей значительно увеличивает амплитуду колебаний.

Существенные изменения произошли при освоении оптического диапазона, в котором длины волн намного меньше размеров резонатора. При этом пришлось отказаться от замкнутых объемов с металлическими стенками. Открытые объемные резонаторы, генерирующие оптические волны, сохранили лишь часть отражающей стенки. В простейшем случае они представляют собой систему из двух противостоящих зеркал, изготовленных из многослойного диэлектрика, которые отражают друг к другу электромагнитную волну.

СОБСТВЕННЫЕ И ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ

Собственные колебания, как известно из теории колебательных контуров, возникают в резонаторе при внешнем импульсном воздействии, когда него поступает порция энергии. После процесса установления они становятся а энгармоническими затухающими и зависят от времени по закону:

где (Ос-собственная круговая частота колебаний, постоянная времени резонатора, собственная добротность резонатора, комплексная собственная частота колебаний.

У объемного резонатора существует целый ряд собственных колебаний, каждому из которых соответствует определенная структура поля и определенные значения Поэтому внешний электромагнитный импульс создает в резонаторе сложное колебание, состоящее из ряда частотных составляющих вида (11.1).

Вынужденные колебания обусловлены (внешними периодическими воздействиями, при этом энергия в систему поступает каждый период. Если частота этих колебаний совпадает с одной из резонансных частот колебательной системы, возникает резонанс, (сопровождающийся резким увеличением амплитуды колебаний. Запасы электрической,и магнитной энергии в резонаторе резонансе в среднем за период одинаковы, так что энергия целиком переходит из одного (состояния другое. Линия связи от (внешнего исрэчника доставляет в колебательную систему только сравнительно небольшое количество энергии, необходимое для восполнения тепловых потерь.

ПАРАМЕТРЫ РЕЗОНАТОРА В РЕЖИМЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

Резонансная частота или лишь незначительно отличается от собственной частоты Например, при это различие (составляет менее . Величина определяется геометрическмми размерами резонатора и структурой электромагнитного поля рассматриваемого колебания. Исследование определенного типа колебаний независимо от других возможно лишь в сравнительно узкой полосе вблизи если другие типы колебаний имеют резонансные частоты, достаточно далекие от или не связаны с возбуждающим устройством.

Добротность можно определить через энергетические параметры. (В теорйи контуров где индуктивность катушки, сопротивление (потерь. Умножим числитель и знаменатель этой формулы (на

Энергия, накопленная в резонаторе при резонансе. Она равна удвоенной магнитной анергии в индуктивности в силу того, что средняя за период мощность потерь резонаторе.

Следовательно, собственная добротность резонатора выражается как

т. е. равна умноженному на отношению энергии, накопленной в резонаторе при [резонансе, потерям анергии (в резонаторе за один период. Формула (11.2) для более универсальна, чем исходное соотношение. В нее входят энергетические величины, которые легко определяются для любой системы.

Входное сопротивление при резонансе (или проводимость измеряется в линии у входа в резонатор перед устройством связи (рис. 11.2). Это сечение линии назовем плоскостью отсчета. В установившемся режиме от генератора потребляется мощность, равная мощности потерь в резонаторе. Поэтому

Таким образом, сопротивление является мерой потерь в резонаторе. Его величина зависит от конструкции устройства связи и места его включения в данный резонатор.

Резонансная характеристика - зависимость от частоты комплексного входного сопротивления резонатора или входной проводимости В зависимости от места включения конструкции элемента связи, а также от выбора положения плоскости отсчета в линии связи можно считать либо тоща резонатор эквивалентен параллельному контуру, либо что эквивалентно последовательному колебательному контуру. Соответственно при (параллельном резонансе

Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод

Спасибо

Общие сведения

Явление ядерно-магнитного резонанса (ЯМР) было обнаружено в 1938 г. Раби Исааком. В основе явления лежит наличие у ядер атомов магнитных свойств. И только в 2003 году был изобретен способ использования этого явления в диагностических целях в медицине. За изобретение его авторы получили Нобелевскую премию. При спектроскопии изучаемое тело (то есть тело пациента ) помещается в электромагнитное поле и облучается радиоволнами. Это совершенно безопасный метод (в отличие, например, от компьютерной томографии ), который обладает очень высокой степенью разрешающей способности и чувствительностью.

Применение в экономике и науке

1. В химии и физике для идентификации веществ, принимающих участие в реакции, а также конечных результатов реакций,
2. В фармакологии для производства лекарств,
3. В сельском хозяйстве для определения химического состава зерна и готовности к высеву (очень полезно при селекции новых видов ),
4. В медицине - для диагностики . Очень информативный метод для диагностики заболеваний позвоночника , особенно межпозвоночных дисков. Дает возможность обнаружить даже самые малые нарушения целостности диска. Выявляет раковые опухоли на ранних стадиях образования.

Суть метода

Метод ядерно-магнитного резонанса основан на том, что в момент, когда тело находится в особо настроенном очень сильном магнитном поле (в 10000 раз сильнее, чем магнитное поле нашей планеты ), молекулы воды, присутствующие во всех клетках организма, формируют цепочки, расположенные параллельно направлению магнитного поля.

Если же внезапно изменить направление поля, молекула воды выделяет частичку электричества. Именно эти заряды фиксируются датчиками прибора и анализируются компьютером. По интенсивности концентрации воды в клетках, компьютер создает модель того органа или части тела, которая изучается.

На выходе врач имеет монохромное изображение, на котором можно увидеть тонкие срезы органа в мельчайших подробностях. По степени информативности данный метод значительно превышает компьютерную томографию. Иногда деталей об исследуемом органе выдается даже больше, чем нужно для диагностики.

Виды магнитно-резонансной спектроскопии

  • Биологических жидкостей,
  • Внутренних органов.
Методика дает возможность в подробностях обследовать все ткани человеческого организма, включающие воду. Чем больше жидкости в тканях, тем светлее и ярче они на картинке. Кости же, в которых воды мало, изображаются темными. Поэтому в диагностике заболеваний кости более информативным является компьютерная томография.

Методика магнитно-резонансной перфузии дает возможность проконтролировать движение крови через ткани печени и головного мозга .

На сегодняшний день в медицине более широко используется название МРТ (магнитно-резонансная томография ), так как упоминание ядерной реакции в названии пугает пациентов.

Показания

1. Заболевания головного мозга,
2. Исследования функций отделов головного мозга,
3. Заболевания суставов,
4. Заболевания спинного мозга,
5. Заболевания внутренних органов брюшной полости,
6. Заболевания системы мочевыведения и воспроизводства,
7. Заболевания средостения и сердца ,
8. Заболевания сосудов.

Противопоказания

Абсолютные противопоказания:
1. Кардиостимулятор ,
2. Электронные или ферромагнитные протезы среднего уха,
3. Ферромагнитные аппараты Илизарова,
4. Крупные металлические внутренние протезы,
5. Кровоостанавливающие зажимы сосудов головного мозга.

Относительные противопоказания:
1. Стимуляторы нервной системы,
2. Инсулиновые насосы,
3. Другие виды внутренних ушных протезов,
4. Протезы сердечных клапанов,
5. Кровоостанавливающие зажимы на других органах,
6. Беременность (необходимо получить заключение гинеколога ),
7. Сердечная недостаточность в стадии декомпенсации,
8. Клаустрофобия (боязнь замкнутого пространства ).

Подготовка к исследованию

Специальная подготовка требуется только тем пациентам, которые идут на обследование внутренних органов (мочеполовых и пищеварительного тракта ): не следует употреблять пищу за пять часов до процедуры.
Если обследованию подвергается голова, представительницам прекрасного пола рекомендуется снять макияж, так как вещества, входящие в косметику (например, в тени для век ), могут повлиять на результат. Все металлические украшения следует с себя снять.
Иногда медицинский персонал проверяет пациента с помощью портативного металлоискателя.

Как проводится исследование?

Перед началом исследования каждый пациент заполняет анкету, помогающую обнаружить противопоказания.

Прибор представляет собой широкую трубу, в которую помещают пациента в горизонтальном положении. Пациент должен сохранять полную неподвижность, иначе изображение не получится достаточно четким. Внутри трубы не темно и есть приточная вентиляция, так что условия для прохождения процедуры достаточно комфортны. Некоторые установки производит ощутимый гул, тогда исследуемому лицу надеваются шумопоглощающие наушники.

Длительность обследования может составлять от 15 минут до 60 минут.
В некоторых медицинских центрах разрешается, чтобы помещении, где проводится исследование, вместе с пациентом находился его родственник или сопровождающий (если у него нет противопоказаний ).

В некоторых медицинских центрах анестезиолог проводит введение успокоительных препаратов. Процедура в таком случае переносится намного легче, особенно это касается больных, страдающих клаустрофобией, маленьких детей или пациентов, которым по каким-то причинам тяжело находиться в неподвижном состоянии. Пациент впадает в состояние лечебного сна и выходит из него отдохнувшим и бодрым. Используемые препараты быстро выводятся из организма и безопасны для пациента.


Результат обследования готов уже через 30 минут после окончания процедуры. Результат выдается в виде DVD-диска, заключения врача и снимков.

Использование контрастного вещества при ЯМР

Чаще всего процедура проходит без использования контраста. Однако в некоторых случаях это необходимо (для исследования сосудов ). В таком случае контрастное вещество вливается внутривенно с использованием катетера. Процедура аналогична любой внутривенной инъекции. Для этого вида исследования применяются особые вещества – парамагнетики . Это слабые магнитные вещества, частицы которых, находясь во внешнем магнитном поле, намагничиваются параллельно линиям поля.

Противопоказания к использованию контрастного вещества:

  • Беременность,
  • Индивидуальная непереносимость компонентов контрастного вещества, выявленная ранее.

Исследование сосудов (магнитно-резонансная ангиография)

С помощью этого метода можно проконтролировать как состояние кровеносной сети, так и движение крови по сосудам.
Несмотря на то, что метод дает возможность «увидеть» сосуды и без контрастного вещества, с его использованием изображение получается более наглядным.
Специальные 4-D установки дают возможность практически в реальном времени проследить за движением крови.

Показания:

  • Врожденные пороки сердца ,
  • Аневризма , расслоение ее,
  • Стеноз сосудов,

Исследование головного мозга

Это исследование головного мозга, не использующее радиоактивные лучи. Метод позволяет увидеть кости черепа, но более детально можно рассмотреть мягкие ткани. Отличный диагностический метод в нейрохирургии, а также неврологии. Дает возможность обнаружить последствия застарелых ушибов и сотрясений , инсультов , а также новообразования.
Назначается обычно при мигренеподобных состояниях непонятной этиологии, нарушении сознания, новообразованиях, гематомах , нарушении координации.

При ЯМР головного мозга исследуются:
  • основные сосуды шеи,
  • кровеносные сосуды, питающие головной мозг,
  • ткани головного мозга,
  • орбиты глазниц,
  • более глубоко находящиеся части головного мозга (мозжечок, эпифиз, гипофиз , продолговатый и промежуточный отделы ).

Функциональная ЯМР

Данная диагностика основана на том, что при активизации какого-либо отдела головного мозга, отвечающего за определенную функцию, усиливается кровообращение в этой области.
Обследуемому человеку даются различные задания, и во время их выполнения фиксируется кровообращение в разных частях головного мозга. Полученные в ходе экспериментов данные сравниваются с томограммой, полученной в период покоя.

Исследование позвоночника

Этот метод замечательно подходит для исследования нервных окончаний, мышц, костного мозга и связок, а также межпозвоночных дисков. Но при переломах позвоночника или необходимости исследования костных структур, он несколько уступает компьютерной томографии.

Можно обследовать весь позвоночник, а можно только беспокоящий отдел: шейный, грудной, пояснично-крестцовый, а также отдельно копчик. Так, при обследовании шейного отдела можно обнаружить патологии сосудов и позвонков, которые влияют на кровоснабжение головного мозга.
При обследовании поясничного отдела можно обнаружить межпозвонковые грыжи , костные и хрящевые шипы, а также ущемления нервов.

Показания:

  • Изменение формы межпозвонковых дисков, в том числе грыжи,
  • Травмы спины и позвоночника,
  • Остеохондроз , дистрофические и воспалительные процессы в костях,
  • Новообразования.

Исследование спинного мозга

Проводится одновременно с обследованием позвоночника.

Показания:

  • Вероятность новообразований спинного мозга, очаговое поражение,
  • Для контроля над заполнением спинномозговой жидкостью полостей спинного мозга,
  • Кисты спинного мозга,
  • Для контроля над восстановлением после операций,
  • При вероятности заболеваний спинного мозга.

Исследование суставов

Данный метод исследования очень эффективен для исследования состояния мягких тканей, входящих в состав сустава.

Используется для диагностики:

  • Хронических артритов ,
  • Травм сухожилий, мускул и связок (особенно часто используется в спортивной медицине ),
  • Переломов,
  • Новообразований мягких тканей и костей,
  • Повреждений, не обнаруживаемых иными методами диагностики.
Применяется при:
  • Обследовании тазобедренных суставов при остеомиелите , некрозе головки бедренной кости, стрессовом переломе, артрите септического характера,
  • Обследовании коленных суставов при стрессовых переломах, нарушении целостности некоторых внутренних составляющих (менисков, хрящей ),
  • Обследовании сустава плеча при вывихах , ущемлении нервов, разрыве капсулы сустава,
  • Обследовании лучезапястного сустава при нарушении стабильности, множественных переломах, ущемлении срединного нерва, повреждении связок.

Исследование височно-нижнечелюстного сустава

Назначается для определения причин нарушения в функции сустава. Данное исследование наиболее полно раскрывает состояние хрящей и мышц, дает возможность обнаружить вывихи. Применяется и перед ортодонтическими или ортопедическими операциями.

Показания:

  • Нарушение подвижности нижней челюсти,
  • Щелчки при открывании – закрывании рта,
  • Боли в виске при открывании – закрывании рта,
  • Боль при прощупывании жевательной мускулатуры,
  • Боль в мускулатуре шеи и головы.

Исследование внутренних органов брюшной полости

Обследование поджелудочной железы и печени назначается при:
  • Неинфекционной желтухе ,
  • Вероятности новообразования печени, перерождения, абсцесса , кист, при циррозе ,
  • В качестве контроля над ходом лечения,
  • При травматических разрывах,
  • Камнях в желчном пузыре или желчных протоках,
  • Панкреатите любой формы,
  • Вероятности новообразований,
  • Ишемии органов паренхимы.
Метод позволяет обнаружить кисты поджелудочной железы, исследовать состояние желчных протоков. Выявляются любые формирования, закупоривающие протоки.

Обследование почек назначается при:

  • Подозрении на новообразование,
  • Заболеваниях органов и тканей, находящихся возле почек,
  • Вероятности нарушения формирования органов мочевыведения,
  • В случае невозможности проведения экскреторной урографии.
Перед обследованием внутренних органов методом ядерно-магнитного резонанса необходимо провести ультразвуковое обследование.

Исследование при заболеваниях системы воспроизводства

Обследования малого таза назначаются при:
  • Вероятности новообразования матки , мочевого пузыря, простаты,
  • Травмах,
  • Новообразованиях малого таза для выявления метастазов,
  • Болях в области крестца,
  • Везикулите,
  • Для обследования состояния лимфатических узлов.
При раке простаты данное обследование назначается для обнаружения распространения новообразования на органы, находящиеся рядом.

За час до исследования нежелательно мочиться, так как изображение будет более информативным, если мочевой пузырь несколько заполнен.

Исследование в период беременности

Несмотря на то, что этот метод исследования намного более безопасен, чем рентген или компьютерная томография, категорически не разрешается использовать его в первом триместре беременности.
Во втором и третьем триместрах данных метод назначают только по жизненным показаниям. Опасность процедуры для организма беременной женщины заключается в том, что во время процедуры некоторые ткани нагреваются, что может вызвать нежелательные изменения в формировании плода.
А вот использование контрастного вещества во время беременности запрещено категорически на любой стадии вынашивания.

Меры предосторожности

1. Некоторые ЯМР установки созданы по типу закрытой трубы. У людей, страдающих боязнью замкнутого пространства, может начаться приступ. Поэтому лучше заранее поинтересоваться тем, как будет проходить процедура. Существуют установки открытого типа. Они представляют собой помещение, похожее на рентгеновский кабинет, но такие установки встречаются нечасто.

2. В помещение, где находится прибор, запрещено входить с металлическими предметами и электронными приборами (например, часами, украшениями, ключами ), так как в мощном электромагнитом поле электронные приборы могут сломаться, а мелкие металлические предметы будут разлетаться. Одновременно с этим будут получены не совсем корректные данные обследования.

Перед применением необходимо проконсультироваться со специалистом.
  1. Суть явления

    Прежде всего, надо заметить, что хотя в названии этого явления присутствует слово «ядерный», к ядерной физике ЯМР никакого отношения не имеет и с радиоактивностью никак не связан. Если говорить о строгом описании, то без законов квантовой механики никак не обойтись. Согласно этим законам, энергия взаимодействия магнитного ядра с внешним магнитным полем может принимать только несколько дискретных значений. Если облучать магнитные ядра переменным магнитным полем, частота которого соответствует разнице между этими дискретными энергетическими уровнями, выраженной в частотных единицах, то магнитные ядра начинают переходить с одного уровня на другой, при этом поглощая энергию переменного поля. В этом и состоит явление магнитного резонанса. Это объяснение формально правильное, но не очень наглядное. Есть другое объяснение, без квантовой механики. Магнитное ядро можно представить как электрически заряженный шарик, вращающийся вокруг своей оси (хотя, строго говоря, это не так). Согласно законам электродинамики, вращение заряда приводит к появлению магнитного поля, т. е. магнитного момента ядра, который направлен вдоль оси вращения. Если этот магнитный момент поместить в постоянное внешнее поле, то вектор этого момента начинает прецессировать, т. е. вращаться вокруг направления внешнего поля. Таким же образом прецессирует (вращается) вокруг вертикали ось юлы, если ее раскрутить не строго вертикально, а под некоторым углом. В этом случае роль магнитного поля играет сила гравитации.

    Частота прецессии определяется как свойствами ядра, так и силой магнитного поля: чем сильнее поле, тем выше частота. Затем, если кроме постоянного внешнего магнитного поля на ядро будет воздействовать переменное магнитное поле, то ядро начинает взаимодействовать с этим полем - оно как бы сильнее раскачивает ядро, амплитуда прецессии увеличивается, и ядро поглощает энергию переменного поля. Однако это будет происходить только при условии резонанса, т. е. совпадения частоты прецессии и частоты внешнего переменного поля. Это похоже на классический пример из школьной физики - марширующие по мосту солдаты. Если частота шага совпадает с частотой собственных колебаний моста, то мост раскачивается всё сильнее и сильнее. Экспериментально это явление проявляется в зависимости поглощения переменного поля от его частоты. В момент резонанса поглощение резко возрастает, а простейший спектр магнитного резонанса выглядит вот так:

  2. Фурье-спектроскопия

    Первые ЯМР-спектрометры работали именно так, как описано выше - образец помещался в постоянное магнитное поле, и на него непрерывно подавалось радиочастотное излучение. Затем плавно менялась либо частота переменного поля, либо напряженность постоянного магнитного поля. Поглощение энергии переменного поля регистрировалось радиочастотным мостом, сигнал от которого выводился на самописец или осциллограф. Но этот способ регистрации сигнала уже давно не применяется. В современных ЯМР-спектрометрах спектр записывается с помощью импульсов. Магнитные моменты ядер возбуждаются коротким мощным импульсом, после которого регистрируется сигнал, наводимый в РЧ-катушке свободно прецессирующими магнитными моментами. Этот сигнал постепенно спадает к нулю по мере возвращения магнитных моментов в состояние равновесия (этот процесс называется магнитной релаксацией). Спектр ЯМР получается из этого сигнала с помощью Фурье-преобразования. Это стандартная математическая процедура, позволяющая раскладывать любой сигнал на частотные гармоники и таким образом получать частотный спектр этого сигнала. Этот способ записи спектра позволяет значительно понизить уровень шумов и проводить эксперименты намного быстрее.

    Один возбуждающий импульс для записи спектра - это самый простейший ЯМР-эксперимент. Однако таких импульсов, разной длительности, амплитуды, с разными задержками между ними и т. п., в эксперименте может быть много, в зависимости от того, какие именно манипуляции исследователю надо провести с системой ядерных магнитных моментов. Тем не менее, практически все эти импульсные последовательности оканчиваются одним и тем же - записью сигнала свободной прецессии с последующим Фурье-преобразованием.

  3. Магнитные взаимодействия в веществе

    Сам по себе магнитный резонанс остался бы не более чем занятным физическим явлением, если бы не магнитные взаимодействия ядер друг с другом и с электронной оболочкой молекулы. Эти взаимодействия влияют на параметры резонанса, и с их помощью методом ЯМР можно получать разнообразную информацию о свойствах молекул - их ориентации, пространственной структуре (конформации), межмолекулярных взаимодействиях, химическом обмене, вращательной и трансляционной динамике. Благодаря этому ЯМР превратился в очень мощный инструмент исследования веществ на молекулярном уровне, который широко применяется не только в физике, но главным образом в химии и молекулярной биологии. В качестве примера одного из таких взаимодействий можно привести так называемый химический сдвиг. Суть его в следующем: электронная оболочка молекулы откликается на внешнее магнитное поле и старается его экранировать - частичное экранирование магнитного поля происходит во всех диамагнитных веществах. Это означает, что магнитное поле в молекуле будет отличаться от внешнего магнитного поля на очень небольшую величину, которая и называется химическим сдвигом. Однако свойства электронной оболочки в разных частях молекулы разные, и химический сдвиг тоже разный. Соответственно, условия резонанса для ядер в разных частях молекулы тоже будут отличаться. Это позволяет различать в спектре химически неэквивалентные ядра. Например, если мы возьмем спектр ядер водорода (протонов) чистой воды, то в нем будет только одна линия, поскольку оба протона в молекуле H 2 O совершенно одинаковы. Но для метилового спирта СН 3 ОН в спектре будет уже две линии (если пренебречь другими магнитными взаимодействиями), поскольку тут есть два типа протонов - протоны метильной группы СН 3 и протон, связанный с атомом кислорода. По мере усложнения молекул число линий будет увеличиваться, и если мы возьмем такую большую и сложную молекулу, как белок, то в этом случае спектр будет выглядеть примерно так:

  4. Магнитные ядра

    ЯМР можно наблюдать на разных ядрах, но надо сказать, что далеко не все ядра имеют магнитный момент. Часто бывает так, что некоторые изотопы имеют магнитный момент, а другие изотопы того же самого ядра - нет. Всего существует более сотни изотопов различных химических элементов, имеющих магнитные ядра, однако в исследованиях обычно используется не более 1520 магнитных ядер, всё остальное - экзотика. Для каждого ядра есть свое характерное соотношение магнитного поля и частоты прецессии, называемое гиромагнитным отношением. Для всех ядер эти отношения известны. По ним можно подобрать частоту, на которой при данном магнитном поле будет наблюдаться сигнал от нужных исследователю ядер.

    Самые важные для ЯМР ядра - это протоны. Их больше всего в природе, и они имеют очень высокую чувствительность. Для химии и биологии очень важны ядра углерода, азота и кислорода, но с ними ученым не очень повезло: наиболее распространенные изотопы углерода и кислорода, 12 С и 16 О, магнитного момента не имеют, у природного изотопа азота 14 N момент есть, но он по ряду причин для экспериментов очень неудобен. Есть изотопы 13 С, 15 N и 17 О, которые подходят для ЯМР-экспериментов, но их природное содержание очень низкое, а чувствительность очень маленькая по сравнению с протонами. Поэтому часто для ЯМР-исследований готовят специальные изотопно-обогащенные образцы, в которых природный изотоп того или иного ядра замещен на тот, который нужен для экспериментов. В большинстве случаев эта процедура весьма непростая и недешевая, но иногда это единственная возможность получить необходимую информацию.

  5. Электронный парамагнитный и квадрупольный резонанс

    Говоря про ЯМР, нельзя не упомянуть о двух других родственных физических явлениях - электронном парамагнитном резонансе (ЭПР) и ядерном квадрупольном резонансе (ЯКР). ЭПР по своей сути подобен ЯМР, разница заключается в том, что резонанс наблюдается на магнитных моментах не атомных ядер, а электронной оболочки атома. ЭПР может наблюдаться только в тех молекулах или химических группах, электронная оболочка которых содержит так называемый неспаренный электрон, тогда оболочка имеет ненулевой магнитный момент. Такие вещества называются парамагнетиками. ЭПР, как и ЯМР, также применяется для исследований различных структурно-динамических свойств веществ на молекулярном уровне, но его область использования существенно уже. Это связано в основном с тем, что большинство молекул, особенно в живой природе, не содержит неспаренных электронов. В некоторых случаях можно использовать так называемый парамагнитный зонд, т. е. химическую группу с неспаренным электроном, которая связывается с исследуемой молекулой. Но такой подход имеет очевидные недостатки, которые ограничивают возможности этого метода. Кроме того, в ЭПР нет такого высокого спектрального разрешения (т. е. возможности отличить в спектре одну линию от другой), как в ЯМР.

    Объяснить «на пальцах» природу ЯКР труднее всего. Некоторые ядра обладают так называемым электрическим квадрупольным моментом. Этот момент характеризует отклонение распределения электрического заряда ядра от сферической симметрии. Взаимодействие этого момента с градиентом электрического поля, создаваемого кристаллической структурой вещества, приводит к расщеплению энергетических уровней ядра. В этом случае можно наблюдать резонанс на частоте, соответствующей переходам между этими уровнями. В отличие от ЯМР и ЭПР, для ЯКР не нужно внешнего магнитного поля, поскольку расщепление уровней происходит без него. ЯКР также используется для исследования веществ, но область его применения еще уже, чем у ЭПР.

  6. Преимущества и недостатки ЯМР

    ЯМР - самый мощный и информативный метод исследования молекул. Строго говоря, это не один метод, это большое число разнообразных типов экспериментов, т. е. импульсных последовательностей. Хотя все они основаны на явлении ЯМР, но каждый из этих экспериментов предназначен для получения какой-то конкретной специфической информации. Число этих экспериментов измеряется многими десятками, если не сотнями. Теоретически ЯМР может если не всё, то почти всё, что могут все остальные экспериментальные методы исследования структуры и динамики молекул, хотя практически это выполнимо, конечно, далеко не всегда. Одно из основных достоинств ЯМР в том, что, с одной стороны, его природные зонды, т. е. магнитные ядра, распределены по всей молекуле, а с другой стороны, он позволяет отличить эти ядра друг от друга и получать пространственно-селективные данные о свойствах молекулы. Почти все остальные методы дают информацию либо усредненную по всей молекуле, либо только о какой-то одной ее части.

    Основных недостатков у ЯМР два. Во-первых, это низкая чувствительность по сравнению с большинством других экспериментальных методов (оптическая спектроскопия, флюоресценция, ЭПР и т. п.). Это приводит к тому, что для усреднения шумов сигнал нужно накапливать долгое время. В некоторых случаях ЯМР-эксперимент может проводиться в течение даже нескольких недель. Во-вторых, это его дороговизна. ЯМР-спектрометры - одни из самых дорогих научных приборов, их стоимость измеряется как минимум сотнями тысяч долларов, а самые дорогие спектрометры стоят несколько миллионов. Далеко не все лаборатории, особенно в России, могут позволить себе иметь такое научное оборудование.

  7. Магниты для ЯМР-спектрометров

    Одна из самых важных и дорогих частей спектрометра - магнит, создающий постоянное магнитное поле. Чем сильнее поле, тем выше чувствительность и спектральное разрешение, поэтому ученые и инженеры постоянно пытаются получить как можно более высокие поля. Магнитное поле создается электрическим током в соленоиде - чем сильнее ток, тем больше поле. Однако бесконечно увеличивать силу тока нельзя, при очень большом токе провод соленоида просто начнет плавиться. Поэтому уже очень давно для высокопольных ЯМР-спектрометров используются сверхпроводящие магниты, т. е. магниты, в которых провод соленоида находится в сверхпроводящем состоянии. В этом случае электрическое сопротивление провода равно нулю, и выделения энергии не происходит при любой величине тока. Сверхпроводящее состояние можно получить только при очень низких температурах, всего нескольких градусов Кельвина, - это температура жидкого гелия. (Высокотемпературная сверхпроводимость - до сих пор удел только чисто фундаментальных исследований.) Именно с поддержанием такой низкой температуры и связаны все технические сложности конструирования и производства магнитов, которые обуславливают их дороговизну. Сверхпроводящий магнит построен по принципу термоса-матрешки. Соленоид находится в центре, в вакуумной камере. Его окружает оболочка, в которой находится жидкий гелий. Эта оболочка через вакуумную прослойку окружена оболочкой из жидкого азота. Температура жидкого азота - минус 196 градусов по Цельсию, азот нужен для того, чтобы гелий испарялся как можно медленнее. Наконец, азотная оболочка изолируется от комнатной температуры внешней вакуумной прослойкой. Такая система способна сохранять нужную температуру сверхпроводящего магнита очень долго, хотя для этого нужно регулярно подливать в магнит жидкие азот и гелий. Преимущество таких магнитов кроме возможности получать высокие магнитные поля также и в том, что они не потребляют энергии: после запуска магнита ток бегает по сверхпроводящим проводам практически без каких-либо потерь в течение многих лет.

  8. Томография

    В обычных ЯМР-спектрометрах магнитное поле стараются сделать как можно более однородным, это нужно для улучшения спектрального разрешения. Но если магнитное поле внутри образца, наоборот, сделать очень неоднородным, это открывает принципиально новые возможности для использования ЯМР. Неоднородность поля создается так называемыми градиентными катушками, которые работают в паре с основным магнитом. В этом случае величина магнитного поля в разных частях образца будет разная, а это значит, что сигнал ЯМР можно наблюдать не от всего образца, как в обычном спектрометре, а только от его узкого слоя, для которого соблюдаются резонансные условия, т. е. нужное соотношение магнитного поля и частоты. Меняя величину магнитного поля (или, что по сути то же самое, частоту наблюдения сигнала), можно менять слой, который будет давать сигнал. Таким образом можно «просканировать» образец по всему объему и «увидеть» его внутреннюю трехмерную структуру, не разрушая образец каким-либо механическим способом. К настоящему времени разработано большое число методик, позволяющих измерять различные параметры ЯМР (спектральные характеристики, времена магнитной релаксации, скорость самодиффузии и некоторые другие) с пространственным разрешением внутри образца. Самое интересное и важное, с практической точки зрения, применение ЯМР-томографии нашлось в медицине. В этом случае исследуемым «образцом» является человеческое тело. ЯМР-томография является одним из самых эффективных и безопасных (но также и дорогих) диагностических средств в различных областях медицины, от онкологии до акушерства. Любопытно заметить, что в названии этого метода медики не употребляют слово «ядерный», потому что некоторые пациенты связывают его с ядерными реакциями и атомной бомбой.

  9. История открытия

    Годом открытия ЯМР считается 1945-й, когда американцы Феликс Блох из Стэнфорда и независимо от него Эдвард Парселл и Роберт Паунд из Гарварда впервые наблюдали сигнал ЯМР на протонах. К тому времени уже было много известно о природе ядерного магнетизма, сам эффект ЯМР был теоретически предсказан, и было сделано несколько попыток его экспериментального наблюдения. Важно отметить, что годом раньше в Советском Союзе, в Казани, Евгением Завойским было открыто явление ЭПР. Сейчас уже хорошо известно, что Завойский также наблюдал и сигнал ЯМР, это было перед войной, в 1941 году. Однако в его распоряжении был магнит низкого качества с плохой однородностью поля, результаты были плохо воспроизводимыми и потому так и остались неопубликованными. Справедливости ради надо заметить, что Завойский был не единственным, кто наблюдал ЯМР до его «официального» открытия. В частности, американский физик Исидор Раби (лауреат Нобелевской премии 1944 года за исследование магнитных свойств ядер в атомных и молекулярных пучках) в конце 30-х годов также наблюдал ЯМР, но счел это аппаратурным артефактом. Так или иначе, но за нашей страной остается приоритет в экспериментальном обнаружении магнитного резонанса. Хотя сам Завойский вскоре после войны стал заниматься другими проблемами, его открытие для развития науки в Казани сыграло огромную роль. Казань до сих пор остается одним из ведущих мировых научных центров по ЭПР-спектроскопии.

  10. Нобелевские премии в области магнитного резонанса

    В первой половине XX века было присуждено несколько Нобелевских премий ученым, без работ которых открытие ЯМР не могло бы состояться. Среди них можно назвать Петера Зеемана, Отто Штерна, Исидора Раби, Вольфганга Паули. Но непосредственно связанных с ЯМР Нобелевских премий было четыре. В 1952 году премию получили Феликс Блох и Эдвард Парселл за открытие ЯМР. Это единственная «ЯМР-ная» Нобелевская премия по физике. В 1991 году премию по химии получил швейцарец Ричард Эрнст, работавший в знаменитой Швейцарской высшей технической школе в Цюрихе. Он был удостоен ее за развитие методов многомерной ЯМР-спектроскопии, которые позволили кардинально увеличить информативность ЯМР-экспериментов. В 2002 году лауреатом премии, также по химии, стал Курт Вютрих, работавший с Эрнстом в соседних зданиях в той же Технической школе. Он получил премию за разработку методов определения трехмерной структуры белков в растворе. До этого единственным методом, позволяющим определять пространственную конформацию больших биомакромолекул, был только рентгеноструктурный анализ. Наконец, в 2003 году премию по медицине за изобретение ЯМР-томографии получили американец Поль Лаутербур и англичанин Петер Мансфилд. Советский первооткрыватель ЭПР Е. К. Завойский Нобелевской премии, увы, не получил.

Ядерный магнитный резонанс (ЯМР) представляет собой ядерную спектроскопию, которая находит широкое применение во всех физических науках и промышленности. В ЯМР для зондирования собственных спиновых свойств атомных ядер используется большой магнит. Подобно любой спектроскопии, для создания перехода между энергетическими уровнями (резонанса) в ней применяется электромагнитное излучение (радиочастотные волны в диапазоне УКВ ). В химии ЯМР помогает определить структуру малых молекул. Ядерно-магнитный резонанс в медицине нашел применение в магнитно-резонансной томографии (МРТ).

Открытие

ЯМР был обнаружен в 1946 году учеными Гарвардского университета Перселем , Фунтом и Торри , а также Блохом , Хансеном и Паккардом из Стэнфорда. Они заметили, что ядра 1 H и 31 P (протон и фосфор-31) способны поглощать радиочастотную энергию при воздействии на них магнитного поля, сила которого специфична для каждого атома. При поглощении они начинали резонировать, каждый элемент на своей частоте. Это наблюдение позволило провести детальный анализ строения молекулы. С тех пор ЯМР нашел применение в кинетических и структурных исследованиях твердых тел, жидкостей и газов, в результате чего было присуждено 6 Нобелевских премий.

Спин и магнитные свойства

Ядро состоит из элементарных частиц, называемых нейтронами и протонами. Они обладают собственным моментом импульса, называемым спином. Подобно электронам, спин ядра можно описать квантовыми числами I и в магнитном поле m. Атомные ядра с четным числом протонов и нейтронов имеют нулевой спин, а все остальные - ненулевой. Кроме того, молекулы с ненулевым спином обладают магнитным моментом μ = γ I , где γ - гиромагнитное отношение, константа пропорциональности между магнитным дипольным моментом и угловым, разным у каждого атома.

Магнитный момент ядра заставляет его ​​вести себя как крошечный магнит. В отсутствие внешнего магнитного поля каждый магнит ориентирован случайным образом. Во время проведения эксперимента ЯМР образец помещается во внешнее магнитное поле В 0 , что заставляет стержневые магниты с низкой энергией выравниваться в направлении B 0 , а с высокой - в противоположном. При этом происходит изменение ориентации спина магнитов. Чтобы понять эту довольно абстрактную концепцию, следует рассмотреть энергетические уровни ядра во время эксперимента ЯМР.

Энергетические уровни

Для переворота спина необходимо целое число квантов. Для любого m существует 2m + 1 энергетических уровней. Для ядра со спином 1/2 их только 2 - низкий, занимаемый спинами, выровненными с B 0 , и высокий, занятый спинами, направленными против В 0 . Каждый энергетический уровень определяется выражением Е = -mℏγВ 0 , где m - магнитное квантовое число, в этом случае +/- 1/2. Энергетические уровни для m > 1/2, известные как квадрупольные ядра, более сложны.

Разность энергий уровней равна: ΔE = ℏγВ 0 , где ℏ - постоянная Планка.

Как видно, сила магнитного поля имеет большое значение, поскольку при ее отсутствии уровни вырождаются.

Энергопереходы

Для возникновения ядерного магнитного резонанса должен произойти переворот спина между уровнями энергии. Разность энергий двух состояний соответствует энергии электромагнитного излучения, которая заставляет ядра изменять свои энергетические уровни. Для большинства ЯМР-спектрометров В 0 имеет порядок 1 Тесла (Т ), а γ - 10 7 . Следовательно, требуемое электромагнитное излучение имеет порядок 10 7 Гц. Энергия фотона представлена ​​формулой Е = hν. Поэтому частота, необходимая для поглощения, равна: ν= γВ 0 /2π.

Ядерное экранирование

Физика ЯМР основана на концепции ядерного экранирования, которое позволяет определять структуру вещества. Каждый атом окружен электронами, вращающимися вокруг ядра и действующими на его магнитное поле, что в свою очередь вызывает небольшие изменения энергетических уровней. Это и называется экранированием. Ядра, которые испытывают различные магнитные поля, связанные с локальными электронными взаимодействиями, называют неэквивалентными. Изменение энергетических уровней для переворота спина требует другой частоты, что создает новый пик в спектре ЯМР. Экранирование позволяет осуществлять структурное определение молекул путем анализа сигнала ЯМР с помощью преобразования Фурье. Результатом является спектр, состоящий из набора пиков, каждый из которых соответствует отдельной химической среде. Площадь пика прямо пропорциональна числу ядер. Подробная информация о структуре извлекается путем ЯМР-взаимодействий , по-разному изменяющих спектр.

Релаксация

Релаксация относится к явлению возврата ядер в их термодинамически стабильные после возбуждения до более высоких энергетических уровней состояния. При этом высвобождается энергия, поглощенная при переходе с более низкого уровня к более высокому. Это довольно сложный процесс, проходящий в разных временных рамках. Двумя наиболее распространенными типами релаксации являются спин-решеточная и спин-спиновая.

Чтобы понять релаксацию, необходимо рассмотреть весь образец. Если ядра поместить во внешнее магнитное поле, они создадут объемную намагниченность вдоль оси Z. Их спины также когерентны и позволяют обнаружить сигнал. ЯМР сдвигает объемную намагниченность от оси Z в плоскость XY, где она и проявляется.

Спин-решеточная релаксация характеризуется временем T 1 , необходимым для восстановления 37 % объемной намагниченности вдоль оси Z. Чем эффективнее процесс релаксации, тем меньше T 1 . В твердых телах, поскольку движение между молекулами ограничено, время релаксации велико. Измерения обычно проводятся импульсными методами.

Спин-спиновая релаксация характеризуется временем потери взаимной когерентности T 2 . Оно может быть меньшим или равным T 1 .

Ядерный магнитный резонанс и его применение

Две основные области, в которых ЯМР оказался чрезвычайно важным, - это медицина и химия, однако каждый день разрабатываются новые сферы его применения.

Ядерная магнитно-резонансная томография, более известная как магнитно-резонансная (МРТ), является важным медицинским диагностическим инструментом , используемым для изучения функций и структуры человеческого тела. Она позволяет получить подробные изображения любого органа, особенно мягких тканей, во всех возможных плоскостях. Используется в областях сердечно-сосудистой, неврологической, костно-мышечной и онкологической визуализации. В отличие от альтернативной компьютерной, магнитно-резонансная томография не использует ионизирующее излучение, следовательно совершенно безопасна.

МРТ позволяет выявить незначительные изменения, происходящие со временем. ЯМР-интроскопию можно использовать для выявления структурных аномалий, возникающих в ходе болезни, а также того, как они влияют на последующее развитие и как их прогрессирование коррелирует с психическими и эмоциональными аспектами расстройства. Поскольку МРТ плохо визуализирует кость, получаются превосходные изображения внутричерепного и внутрипозвоночного содержимого.

Принципы использования ядерно-магнитного резонанса в диагностике

Во время процедуры МРТ пациент лежит внутри массивного полого цилиндрического магнита и подвергается воздействию мощного устойчивого магнитного поля. Разные атомы в сканируемой части тела резонируют на разных частотах поля. МРТ используется прежде всего для обнаружения колебаний атомов водорода, которые содержат вращающееся протонное ядро, обладающее небольшим магнитным полем. При МРТ фоновое магнитное поле выстраивает в линию все атомы водорода в ткани. Второе магнитное поле, ориентация которого отличается от фонового, включается и выключается много раз в секунду. На определенной частоте атомы резонируют и выстраиваются в линию со вторым полем. Когда оно выключается, атомы возвращаются обратно, выравниваясь с фоном. При этом возникает сигнал, который можно принять и преобразовать в изображение.

Ткани с большим количеством водорода, который присутствует в организме человека в составе воды, создает яркое изображение, а с малым его содержанием или отсутствием (например, кости) выглядят темными . Яркость МРТ усиливается благодаря контрастному веществу, такому как гадодиамид , который пациенты принимают перед процедурой. Хотя эти агенты могут улучшить качество изображений, по своей чувствительности процедура остается относительно ограниченной. Разрабатываются методы повышения чувствительности МРТ. Наиболее перспективным является использование параводорода - формы водорода с уникальными свойствами молекулярного спина, который очень чувствителен к магнитным полям.

Улучшение характеристик магнитных полей, используемых в МРТ, привело к разработке высокочувствительных методов визуализации, таких как диффузионная и функциональная МРТ, которые предназначены для отображения очень специфических свойств тканей. Кроме того, уникальная форма МРТ-технологии , называемая магнитно-резонансной ангиографией, используется для получения изображения движения крови. Она позволяет визуализировать артерии и вены без необходимости в иглах, катетерах или контрастных агентах. Как и в случае с МРТ, эти методы помогли революционизировать биомедицинские исследования и диагностику.

Передовые компьютерные технологии позволили радиологам из цифровых сечений, полученных сканерами МРТ, создавать трехмерные голограммы, служащие для определения точной локализации повреждений. Томография особенно ценна при обследовании головного и спинного мозга, а также органов таза, таких как мочевой пузырь, и губчатой кости. Метод позволяет быстро и ясно точно определить степень поражения опухолью и оценить потенциальный ущерб от инсульта, позволяя врачам своевременно назначать надлежащее лечение. МРТ в значительной степени вытеснила артрографию , необходимость вводить контрастное вещество в сустав для визуализации хряща или повреждение связок, а также миелографию , инъекцию контрастного вещества в позвоночный канал для визуализации нарушений спинного мозга или межпозвонкового диска.

Применение в химии

Во многих лабораториях сегодня ядерный магнитный резонанс используется для определения структур важных химических и биологических соединений. В спектрах ЯМР различные пики дают информацию о конкретном химическом окружении и связях между атомами. Наиболее распространенными изотопами, используемыми для обнаружения сигналов магнитного резонанса, являются 1 H и 13 C, но подходит и множество других, таких как 2 H, 3 He , 15 N, 19 F и т. д.

Современная ЯМР-спектроскопия нашла широкое применение в биомолекулярных системах и играет важную роль в структурной биологии. С развитием методологии и инструментов ЯМР стал одним из самых мощных и универсальных спектроскопических методов анализа биомакромолекул, который позволяет характеризовать их и их комплексы размерами до 100 кДа . Совместно с рентгеновской кристаллографией это одна из двух ведущих технологий определения их структуры на атомном уровне. Кроме того, ЯМР предоставляет уникальную и важную информацию о функциях белка, которая играет решающую роль в разработке лекарственных препаратов. Некоторые из применений ЯМР-спектроскопии приведены ниже.

  • Это единственный метод определения атомной структуры биомакромолекул в водных растворах в близких к физиологическим условиях или имитирующих мембрану средах.
  • Молекулярная динамика. Это наиболее мощный метод количественного определения динамических свойств биомакромолекул .
  • Сворачивание белка. ЯМР-спектроскопия является наиболее мощным инструментом для определения остаточных структур развернутых белков и посредников сворачивания.
  • Состояние ионизации. Метод эффективен при определении химических свойств функциональных групп в биомакромолекулах, таких как ионизационные состояния ионизируемых групп активных участков ферментов .
  • Ядерный магнитный резонанс позволяет изучить слабые функциональные взаимодействия между макробиомолекулами (например, с константами диссоциации в микромолярном и миллимолярном диапазонах), что невозможно сделать с помощью других методов.
  • Гидратация белков. ЯМР является инструментом для обнаружения внутренней воды и ее взаимодействия с биомакромолекулами.
  • Это уникальный метод прямого обнаружения взаимодействия водородных связей .
  • Скрининг и разработка лекарств. В частности, метод ядерного магнитного резонанса особенно полезен при идентификации препаратов и определении конформаций соединений, связанных с ферментами, рецепторами и другими белками.
  • Нативный мембранный белок. Твердотельный ЯМР обладает потенциалом определения атомных структур доменов мембранных белков в среде нативной мембраны, в том числе со связанными лигандами.
  • Метаболический анализ.
  • Химический анализ. Химическая идентификация и конформационный анализ синтетических и природных химических веществ.
  • Материаловедение. Мощный инструмент в исследовании химии и физики полимеров.

Другие применения

Ядерный магнитный резонанс и его применение не ограничены медициной и химией. Метод оказался очень полезным и в других областях, таких как климатические испытания, нефтяная промышленность, управление процессами, ЯМР поля Земли и магнитометры. Неразрушающий контроль позволяет сэкономить на дорогих биологических образцах, которые могут быть использованы повторно, если необходимо провести больше испытаний. Ядерно-магнитный резонанс в геологии используется для измерения пористости пород и проницаемости подземных жидкостей. Магнитометры применяются для измерения различных магнитных полей.