Защита от шума и вибраций. Особенности акустического расчета на промышленных предприятиях Акустические расчеты

Общие технические и организационные методы борьбы с шумом и вибрациями на производстве

Борьба с шумом и вибрациями на промышленном предприятии - это комплекс инженерно-технических мероприятий. Выявление источников и причин возникновения шума и вибраций должно быть совмещено с регистрацией и изучением их спектров. Только опираясь на исследования амплитудно-частотных характеристик, можно наметить и провести в жизнь технические мероприятия, направленные на устранение причин возникновения вибраций и шума. Расстановка оборудования в цехах должна производиться не только с учетом технологического процесса, удобства монтажа, ремонта, но и с учетом требований обеспечения здоровых условий труда.

Шумное оборудование следует группировать отдельно и устанавливать или в изолированном помещении, или в отдельной части цеха со звукоизолирующими или экранирующими перегородками.

При разработке технологических процессов, а также при проектировании участков, цехов, оборудования выполняется расчет ожидаемых шумовых полей в местах длительного пребывания людей.

Для этого необходимо выполнить акустический расчет, который включает:

· выявление источников шума и определение их шумовых характеристик;

· выбор расчетных точек в помещении, для которых производится расчет допустимых уровней звукового давления для этих точек;

· определение ожидаемых уровней звукового давления в расчетных точках до осуществления мероприятий по снижению шума с учетом снижения уровней звуковой мощности по пути распространения шума;

· определение требуемого снижения уровня звукового давления в расчетных точках;

· выбор мероприятий для обеспечения требуемого снижения уровней звукового давления в расчетных точках;

· расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок, звукоизолирующих кожухов и т. п.).

В начале расчета необходимо выявить все источники шума в производственных помещениях, обратив особое внимание на особо мощные источники. Шумовые характеристики оборудования и установок указываются заводом - изготовителем в прилагаемой технической документации.

Расчетные точки внутри помещения выбирают по ГОСТ 12.1.050-86. ССБТ «Методы измерения шума на рабочих местах».

В зоне постоянного пребывания людей выбирают не менее двух расчетных точек на высоте 1,5 м от уровня пола или рабочей площадки. При одном источнике шума в помещении первая расчетная точка берется на рабочем месте, при нескольких однотипных источниках - на рабочем месте в средней части помещения. Вторая расчетная точка берется в зоне постоянного пребывания людей, не связанных с работой оборудования. Если имеется несколько различных источников, отличающихся друг от друга по октавным уровням звуковой мощности более чем на 15 дБ хотя бы в одной октавной полосе, то на рабочих местах берутся две расчетные точки: у источников с максимальным и минимальным уровнями шума. Для цехов с групповым размещением однотипного оборудования расчетные точки берутся в центре каждой группы. Допустимые уровни звукового давления принимаются на основании ГОСТ 12.1.003-86, ССБТ «Шум. Общие требования безопасности».


Определение ожидаемых уровней звукового давления в расчетных точках .

При проведении расчетов ожидаемых уровней звукового давления в производственных помещениях наиболее часто расчетная точка находится в том же помещении, где установлен источник шума или в соседнем помещении.

А. Расчетная точка находится в помещении с одним источником шума.

L = L P +101g(Ф/4r 2 +4/B) (2.27)

где L - уровень звукового давления, дБ;

L p - уровень звуковой мощности источника шума, дБ;

Ф - фактор направленности источника для направления в точку наблюдения;

r-расстояние от геометрического центра источника до расчетной точки,м;

В - постоянная помещения (определяется по графику зависимости от объема помещения), м 2 ;

Б. Расчетная точка находится в помещении с несколькими источниками шума.

L=10lg(іФ/4г 2 +4/Ві) (2.28)

где i = 10 0,1 Lp і - сумма уровней звуковой мощности для i - того источника шума;

Lpi -уровень звуковой мощности i - того источника, дБ;

m i - число источников, находящихся в зоне прямой видимости из расчетной точки;

п - общее число источников в помещении с учетом среднего коэффициента одновременности работы оборудования.

В . Расчетная точка расположена в изолируемом от источников шума помещении.

Если источники (или один источник) шума расположены в смежном с изолируемым помещении, а шум проникает в изолируемое помещение через ограждающие конструкции, то ожидаемые уровни в расчетной точке определяются по формуле:

L = Lр.сум - 10 lg Ви + 10 lg Sorp - R - 10 lg Вш + 6, дБ (2.29)

Lp cyм=101g Lpi (2.30)

Lp сум - суммарный уровень звуковой мощности, излучаемый всеми источниками, находящимися в рассматриваемом шумном помещении, дБ;

m - общее количество источников шума; (если источник шума один, m = 1, Lp сум = Lp, где Lp - уровень звуковой мощности этого источника);

Ви, Вш - соответственно постоянные изолируемого и шумного помещений, м 2 ;

Sorp - площадь ограждения, м 2 ;

R-звукоизолирующая способность ограждения, через которое шум проникает в изолируемое помещение, дБ.

R = 201gQ + 201gf-54, (2.31)

где Q - вес 1-го м 2 ограждения заданной толщины, кг / м 2 ;

f- частота звука, Гц.

f rp =----------- , (2.32)

где f г p - частота волнового совпадения, от которой звукоизолирующая способность не будет возрастать, Гц;

с 1 - скорость распространения звуковых волн, м/с;

h - толщина преграды, см.

Определение требуемого снижения уровней звукового давления

Требуемое снижение уровней звукового давления L определяется по формуле:

L= L-L доп ()

где L-измеренный уровень звукового давления на рабочих местах действующего предприятия, определенный в расчетных точках (см. п. 3);

L доп -допустимые по нормам уровни звукового давления, дБ по ГОСТ 12.1.003-86. «Шум. Общие требования безопасности».

Методы и средства коллективной и индивидуальной

защиты от шума

После получения требуемого снижения уровней звукового давления необходимо выбрать метод защиты от шума.

Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

Методы относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Снижение шума можно достичь только путем обесшумливания всего оборудования с высоким уровнем шума.

Работу относительно обесшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

Борьба с шумом в источнике его возникновения – наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

Архитектурно-планировочный аспект коллективной защиты от шума – предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков, что защищает рабочее место и человека от непосредственного влияния прямого звука.

Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Звукопоглощение используется при акустической обработке помещений.

Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы; устанавливаются резонаторные экраны, т.е. искусственные поглотители. Эффект акустической обработки больше в низких помещениях (где высота не превышает 6м). Акустическая обработка позволяет снизить шум на 8 дБА.

Уровень звука после применения звукопоглощающей облицовки рассчитывают по формуле:

L=10, (2.32)

А 1 =В ш S/ В ш +S, (2.35)

S – общая площадь всех поверхностей помещения


  • Выбор облицовочных материалов
  • Распределение акустических систем
  • Вывод результатов расчета



Правильное размещение аппа ратуры при любых акустических характеристиках зала позволяет получить хорошее качество восприятия различных звуков: речи, музыки, шумов. В пространстве расположения зрителей, участвующих в мероприятии, требуется обеспечить нужную громкость, разборчивость и звучание без искажений во всем диапазоне частот аудио сигнала. С этой целью предлагаем услугу проведения профессионального акустического расчета . Он позволяет выбрать облицовочный материал поверхностей, разборчивость речи и состав аудиосистемы.

Нашей компанией проводятся электро-акустические расчеты для различных объектов: стадионов , бассейнов , теннисных кортах , прочих спортивных объектов , концертных залов , ресторанов , открытых площадок , Храмов , залов для проведения концертов и конференций . Рассчитывая акустику, специалисты учитывают особенности архитектуры помещения и специфику проводимого в нем мероприятия. Требуемая оптимальная величина звукового давления различна в случаях трансляции объявлений диктора, фонового музыкального сопровождения, концерта звезды или классической музыки.

При расчете звуковой аппаратуры для конкретного зала, проводится анализ помещения. На его основании выбирают оптимальное распределение звукового поля и места размещения колонок. Используются план, разрезы помещения, описание отделочных материалов потолка, стен.

Чтобы заказать акустический расчет , следует предоставить исходные данные с указанием габаритных размеров площадки, высоту потолка, материалы, характер мероприятия. Предоставляют чертежи либо эскизы. При необходимости исполнителем проекта на месте проводятся замеры.

При расчете мощности акустической системы как один из параметров учитывается уровень шума. Он зависит от числа людей в зале и их действий. Большее звуковое давление требуется на танцплощадке. Имеет значение также удаленность слушателей от источников звукового сигнала. Их размещают таким образом, чтобы обеспечить равномерность звукового поля для всех зрительских мест. Если в помещении имеются балконы и бельэтаж, то для них добовляются линии задержки и расчеты проводятся для каждой зоны совокупно.

Воспользовавшись предложенной компанией услугой проведения расчета и подбора акустической системы, можно организовать качественную трансляцию звука в любом месте: в зале ресторана, клуба или на стадионе. По нашим расчетам, наши специалисты выполняют также установку аппаратуры и ее настройку.

Основой проектирование звуковой системы или системы озвучивания помещений является акустический расчет. С помощью акустического расчета можно понять какие акустические системы лучше всего выбрать для данного зала и как лучше всего их расположить для обеспечение равномерного распределения звука. С помощью расчета звука так же есть возможность согласовать с заказчиком в каких зонах нужно изменить уровень громкости звукового сигнала для обеспечения комфортности зрителей. Еще одна задача которую можно выполнить с помощью акустического расчета это расчет звукопоглощения, подбор облицовочных материалов зала или помещения, где будет установлена звуковая система, для обеспечении качественной разборчивости речи и хорошего восприятие музыки.

Вопрос акустической обработки различных помещений является очень актуальным в настоящее время. С появлением новых моделей звукозаписывающей и звуковоспроизводящей аппаратуры она стала обязательной.

Современная промышленность предлагает огромный выбор отделочных материалов с различными частотными свойствами, что позволяет при правильном их выборе получить необходимые частотные характеристики помещений кинозалов, студий звукозаписи, речевых студий, концертных залов, вокзалов, аэропортов, конференц-залов, ночных клубов и множества других.

Выбор материалов производился по различным критериям, в том числе экономическому. Таким образом, можно выбрать недорогие материалы, но при этом все требования к частотным характеристикам помещения выполняются. Правильность выбора материалов будет подтверждена расчетом частотных характеристик.



Для создания модели под акустический расчет необходимы все размеры зала. В специализированной программе EASE создается 3D-модель зала точная копия, со всеми размерами, в которой подбираются материалы по коэффициенту звукопоглощения для достижения рекомендуемого времени реверберации под определенный тип зала и его назначения.

На рисунке показаны графики для различных залов:

  • 1 - залы для ораторий и органной музыки;
  • 2 - залы для симфонической музыки;
  • 3 - залы для камерной музыки, залы оперных театров;
  • 4 - залы многоцелевого назначения, залы музыкально-драматических театров, спортивные залы;
  • 5 - лекционные залы, залы заседаний, залы драматических театров, кинозалы, пассажирские залы.

Как только рекомендуемое расчетное время реверберации достигло нужного результата, в модели зала устанавливаются симуляторы акустических систем (громкоговорителей). Файлы-симуляторы громкоговорителей находятся в базе программы акустического расчета EASE и периодически пополняется. В 3D-модели зала (помещения) можно распределить симуляторы акустических систем как угодно, для этого специалисты пользуются определенным правилам которые необходимо соблюдать для озвучивания залов и других помещений. Как и в реальности акустические системы можно устанавливать на основание (например: на пол или на сцену), на высоте (подвесные громкоговорители) и встраивать в потолок или в стену.

При расчете программа будет выдавать несколько параметров, по которым можно сформировать благоприятную акустическую картинку.

Звуковое давление - расчет

Данный параметр описывает распределение звукового давления по площади зрительской зоны без учета отражений. Величина неравномерности: разница между максимальным и минимальным значением давления характеризует корректность применения акустических систем и мест их размещения.

Коэффициент потери согласных

Коэффициент потери согласных или ARTICULATION LOSS - графическое отображение потери артикуляции согласных в процентах. Это обратный критерий, 0% - идеальное значение параметра, описывающее отсутствие потери согласных; 100% - наихудшее значение параметра, описывающее полную потерю согласных.

  • от 0% до 7% - наилучший результат;
  • от 7% до 11% - хороший результат;
  • от 11% до 15% - удовлетворительный результат;
  • выше 15% - плохой результат.

В акустике термин "разборчивость" обозначает возможность слышать и правильно различать все фонемы, т.е. составные элементы языка. Разборчивость речи - самый важный параметр при оценке качества воспроизведения звука, и зависит, прежде всего, от правильного понимания согласных букв. Реверберация и высокий уровень фонового шума искажают разборчивость речи. Процент "потерянных" согласных букв дает оценку разборчивости сообщения и обозначается ALCons.

При акустическом сигнале, таком как речь, чрезвычайно изменчивом во времени и при всевозможном шуме окружающей среды, достаточно высокое соотношение сигнал/шум (хотя бы 10 дБ) способствует наилучшему восприятию сообщения. Разборчивость уменьшается при увеличении расстояния между источником и слушателем до предельного расстояния. Для больших расстояний разборчивость остается постоянной, каким бы ни было расстояние до слушателя, но зависит от времени реверберации.

Любое положение слушателя характеризуется определенным значением Alcons. Уменьшение этого значения довольно сложно, т. к. предполагает изменение геометрии помещения и/или имеющихся в нем материалов.

Разборчивость речи

Разборчивость речи оценивается с помощью коэффициента STI . Данный параметр является главным коэффициентом для оценки качества звучания музыкальной системы. Для различных видов помещений или задач существуют свои диапазоны, в предел которых необходимо, чтобы значение коэффициента STI уложилось.

Коэффициент STI зависит от всех параметров: размеры помещения, дальность излучателя звука, уровень шума, зрителей, облицовка помещения, время реверберации, уровень звукового давления.

  • от 0,6 до 1 - наилучший результат;
  • от 0,45 до 0,6 - хороший результат;
  • от 0,3 до 0,45 - Удовлетворительный результат;
  • от 0 до 0,3 - плохой результат.

Коэффициент музыкальной ясности.

Коэффициент музыкальной ясности С80.

  • 0дБ -для органной, романтическая музыки;
  • +2дБ -для классической муз., хора, церковного пения;
  • +4дБ -для поп. Музыки;
  • +6дБ -для рок-н-ролла.

Наша компания производит профессиональный акустический расчет любой сложности, специалисты прошедшие обучение специализированной программы EASE имеют сертификат, который выдается в центре обучения "AFMG" в г. Берлине, что подтверждает ниже предоставленный сертификат:

Акустический расчет помещения необходим для точной установки акустических систем в зале. Так же акустический расчет производится для оптимизации акустических свойств помещения.

Кочнов Олег Владимирович
руководитель учебно-производственного отдела компании ESCORT GROUP

Интенсивные экономические преобразования, происходящие в нашей стране, усовершенствованная и упрочненная нормативная база способствуют возрождению промышленности, росту числа производственных предприятий. Во исполнение федерального закона от 22.07.2008 - ФЗ № 123-ФЗ «Технический регламент о требованиях пожарной безопасности», имеющиеся на промышленных предприятиях производственные помещения с работающими в них людьми должны быть защищены системами противопожарной безопасности. Наиважнейшей частью, обеспечивающей комплексную безопасность зданий и сооружений, являются организационные мероприятия, элементом которых является электроакустический расчет. Цель данной статьи - познакомить читателя с методикой электроакустического расчета (ЭАР), дать его как нормативное, так и фактическое обоснование - очертить специфику расчета в условиях высоких шумов, характерных для промышленных предприятий, продемонстрировать примеры расчета.

При возникновении пожара (или иных чрезвычайных ситуаций), возникающих внутри производственных помещений (или на территории защищаемого предприятия), задействуется (автоматически включается) система оповещения, осуществляющая трансляцию специально разработанных текстов, необходимых для эффективной эвакуации людей в безопасное место.

На промышленных предприятиях используются следующие типы систем оповещения:

■ системы оповещения и управления эвакуацией (СОУЭ), проектируемые на основании ;

■ объектовые (ОСО) и локальные (ЛСО) системы оповещения при чрезвычайных ситуациях, а также системы громкоговорящей связи, проектируемые на основании . Нормативным основанием для проектирования централизованных, локальных и объектовых систем оповещения является федеральный закон № 68-ФЗ «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера» от 21.12.1994.

На особо крупных объектах, таких как атомные или гидроэлектростанции, используются командно-поисковые системы (комплексы).

Достоверность передачи аварийного сообщения определяется характеристиками, функциональностью и надежностью технических средств систем оповещения, а вот достоверность восприятия может быть подтверждена только расчетами.

Электроакустический расчет позволяет с достаточно высокой точностью определить уровень звукового давления в так называемой расчетной точке (РТ) - точке (месте) возможного нахождения людей. Такие точки выбираются в местах наиболее критичных с точки зрения как удаления, так и присутствующего в них шума. Зная расстояние между расчетной точкой и звуковым источником, легко определить степень уменьшения звукового давления на расстоянии, однако этого совсем не достаточно. Согласно требованиям нормативной документации необходимо обеспечить условия, при которых полученный уровень попадет в определенные границы.

В специфике промышленных предприятий наиболее важной задачей является определение точного значения уровня шума на рабочих местах. Следует заметить, что измерительные приборы в такого рода задачах могут использоваться лишь как вспомогательные средства в силу постоянно меняющихся условий. Таким образом, условия четкого восприятия могут быть достигнуты решением двух задач - эффективной расстановкой громкоговорителей и защитными акустическими мероприятиями.

Любая из этих систем в качестве конечного исполнительного элемента использует громкоговоритель - устройство, осуществляющее преобразование электрического сигнала на входе в акустический (слышимый) сигнал на выходе. В зависимости от требований к характеру передаваемой (транслируемой) информации, к громкоговорителю предъявляются различные требования. Так, по требованиям, изложенным в , если численность людей, работающих на производственном объекте: в цеху, на складском помещении, в лаборатории и т. д., превышает 100 человек, то для защиты такого объекта применяется СОУЭ 3 типа - речевая система оповещения, осуществляющая трансляцию специально разработанных текстов. В этом случае громкоговоритель должен эффективно работать в диапазоне от 200 Гц до 5 кГц. Под понятием эффективности следует понимать как величину звукового давления (громкости), так и КПД громкоговорителя. Для повышения степени информативности СОУЭ включают и световой способ оповещения.

ОСНОВЫ ЭЛЕКТРОАКУСТИЧЕСКОГО РАСЧЕТА

Понятие «акустический расчет» (АР) само по себе является достаточно емким. В контексте обеспечения безопасности людей, находящихся внутри производственных помещений, выполняется так называемый электроакустический расчет (ЭАР), в процессе которого:

■ анализируется защищаемое помещение;

■ выбираются расчетные точки (РТ);

■ рассчитывается звуковое давление в РТ;

■ определяются уровни шума (УШ) в РТ, характерные для данного помещения;

■ выявляются дополнительные источники шума;

■ проверяются граничные условия расчета;

■ выбираются параметры громкоговорителей и определяются схемы их расстановки;

■ в случае невыполнения граничных условий разрабатываются организационные мероприятия, повышающие достоверность передачи информации.

Требования, предъявляемые к ЭАР, можно найти в , а методику - в Приложении А, к , однако, следует заметить, что имеющаяся в данном приложении методика для какого-либо серьезного расчета совершенно непригодна.

Название расчета - электроакустический - обусловлено учетом электрических параметров звукового тракта, являющихся входными для акустического расчета. Следует заметить, что требования к расчету, изложенные в , не вполне достаточны, однако, являются необходимыми, поэтому основное внимание в данной статье будет уделено выполнению именно этих требований. Что касается специфики данного расчета, в частности, высоких шумов, будем опираться на СНиП по Шуму , в котором достаточно подробно излагаются как расчетные, так и организационные мероприятия по расчету, учету и борьбе с высокими шумами.

Рассмотрим основные понятия, необходимые для выполнения ЭАР.

ОСНОВНЫЕ ПАРАМЕТРЫ ГРОМКОГОВОРИТЕЛЯ

Согласно нормативной документации, громкоговорители должны воспроизводить звуковой или речевой сигнал в диапазоне: 200 Гц - 5 кГц.

Звуковое давление громкоговорителя измеряется в децибелах (дБ) и определяется как его чувствительностью Р 0 , дБ, так и электрической мощностью, Р вт, Вт, подведенной к его входу:

Р дб = Р о + 10log (Р вт / Р пор), (1)

Р о - чувствительность громкоговорителя, дБ; Р вт - мощность громкоговорителя, Вт; Р пор - пороговая мощность, = 1Вт.

Чувствительность громкоговорителя, дБ - уровень звукового давления, измеренного на рабочей оси громкоговорителя на расстоянии 1 м от рабочего центра на частоте 1 кГц при мощности 1 Вт. Мощность громкоговорителя берется из паспорта, предоставляемого производителем или поставщиком, при этом следует обращать внимание на следующие обстоятельства:

1) Если в паспорте нет никаких специальных ссылок или указаний, то (в большинстве случаев) указывается т. н. RMS мощность, измеренная на 1кГц.

2) На т. н. «градации включения».

Здесь требуется комментарий. Дело в том, что громкоговорители, используемые в системах оповещения, являются трансформаторными. Первичная обмотка трансформатора имеет, как правило, несколько отводов, имеющих различный импеданс и позволяющих работать на различных мощностях, поэтому в формуле (1) необходимо указывать конкретную мощность включения.

Исполнение. Немаловажным параметром громкоговорителей, характерным для производственных помещений, является параметр, называемый «исполнение». Для различных условий эксплуатации (температура, влага, пыль, агрессивные среды) могут использоваться громкоговорители с различными классами исполнения (защиты). При низких температурах используются морозостойкие громкоговорители. При повышенной концентрации влаги и пыли - громкоговорители с различными степенями защиты, определяемые индексом IP:

■ IP-41 - закрытые помещения;

■ IP-54 - уличное исполнение;

■ IP-67 - высокая степень защиты от пыли и влаги. Дополнительные параметры громкоговорителя будут рассмотрены ниже.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ЭЛЕКТРОАКУСТИЧЕСКОГО РАСЧЕТА

Исходными данными для ЭАР (на производственных предприятиях) являются:

■ план и разрез помещения с расположением технологического и инженерного оборудования с целью выбора расчетных точек;

■ определение уровня шума в расчетных точках;

■ сведения о характеристиках ограждающих конструкций помещения (коэффициенты поглощения);

■ технические характеристики и геометрические размеры источников шума.

Для расчета уровня звукового давления в расчетной точке необходимо рассмотреть два важных понятия:

■ само понятие «расчетная точка» (РТ);

■ понятие «уровень шума» (УШ) в РТ.

РАСЧЕТНАЯ ТОЧКА

Расчетная точка - место возможного (вероятного) нахождения людей наиболее критичное с точки зрения положения и удаления от звукового источника (громкоговорителя). РТ выбирается на расчетной плоскости - (мнимой) плоскости, проведенной параллельно полу на высоте 1,5 м, (1,2 м для сидячих мест) в месте с наихудшими условиями -точке наиболее удаленной от громкоговорителя или в точке с наибольшим УШ.

Согласно НД , РТ выбираются:

■ в зоне прямого звука;

■ в зоне отраженного звука;

■ в середине толпы (месте максимальной концентрации людей).

Данный выбор (способ) не подходит для ЭАР, кроме последнего пункта, и вот почему. Под зоной прямого звука в контексте имеется в виду расстояние, не превышающее двойного размера источника звука. В под источниками звука (шума) подразумеваются машины, турбины, агрегаты и т. д. При использовании в качестве звукового источника даже самого большого громкоговорителя это расстояние не превысит 1 м, что не актуально.

В зоне отраженного звука. Здесь имеется в виду точка, расположенная, во-первых, вблизи отражающей поверхности и, во-вторых, максимально удаленная от источника звука. Выбор РТ вблизи отражающей поверхности объясняется спецификой акустического расчета как расчета именно для шумовых источников, для которых учитывается как энергия прямого звука, так и диффузионная энергия. При удалении от источника шума на расстояние, вдвое превышающее его размеры, начинает резко превалировать влияние диффузионной составляющей, см. далее формулу (7). Электроакустический же расчет, по своей специфике, близок к акустическому расчету, выполняемому для кинотеатров, концертных залов, в которых характерной информацией является музыка или речь. Такие расчеты для обеспечения надлежащей разборчивости выполняются с использованием так называемой геометрически-лучевой теории, позволяющей учитывать отражения и определять уровни прямого звука, приходящего (поступающего) в РТ. Согласно данной теории, известной еще древним грекам, звуковая энергия отождествляется с тонким лучом (света). При попадании на предметы часть звуковой энергии поглощается, а часть отражается под тем же самым углом.

В акустике под прямым звуком подразумевается как прямой звук - звук, распространяющийся напрямую от источника до РТ, так и первичные отражения - звук, поступающий в РТ, отразившись от поверхностей (площадок) не более 1 раза.

УРОВНИ ШУМА

Для выполнения ЭАР необходимо знать точное значение УШ. С определением УШ сопряжен ряд сложностей. Какую именно величину УШ необходимо использовать, на какой частоте его измерять и т. д.

Определить величину УШ можно несколькими способами:

■ непосредственным измерением;

■ из нормативных таблиц ;

■ дополнительными расчетами.

Относительно УШ имеется достаточно серьезная документация в виде , однако, например, проектировщики СОУЭ в своих расчетах на данный (подробный) СНиП не опираются. Отсутствие четких методик ЭАР не дает возможности подметить однозначную взаимосвязь между двумя величинами - необходимым уровнем звукового давления в РТ и УШ, определяемым в этой же точке. Это первое. Второе - в для определения УШ используется достаточно специфичный, непривычный для среднестатистического проектировщика СОУЭ расчетный аппарат, связанный с октавными уровнями, расчетом диффузионной энергии. Такие расчеты, как правило, выполняют специалисты по акустике, в то время как непосредственного требования выполнить ЭАР нет и он выполняется либо по требованию (по техническому заданию) заказчика, либо по желанию проектировщика. Непосредственное измерение УШ сопряжено с рядом сложностей. Во-первых, для такого измерения необходим профессиональный, а главное, поверенный измеритель УШ (шумомер). Во-вторых, измерение необходимо производить не только на различных частотах, но и в различные промежутки (отрезки) времени. Согласно , для производственных предприятий необходимо использовать период рабочей смены. При невозможности выполнить подобные измерения необходимо пользоваться уже имеющимися данными, взятыми из конструкторской документации или из ТЗ заказчика, а в случае их отсутствия необходимо обратиться к Шум-таблицам, например, СП 51.13330.2011. Защита от шума .

СПЕЦИФИКА ОПРЕДЕЛЕНИЯ ОКТАВНЫХ УРОВНЕЙ ШУМА

В указаны уровни для 9-октавных полос от 31,5 Гц до 8 кГц. Согласно пп. 5.1 расчет выполняется для 8-октавных полос от 63 Гц до 8 кГц. Согласно же , частотный диапазон 0,2-5 кГц вмещает лишь 5 полос со среднегеометрическими частотами -0,25/0,5/1/2/4 кГц. Данное расхождение преодолевается требованием выполнять расчет в дБА - уровнях звукового давления, скорректированных по шкале А. Можно показать, что суммарный эффект восприятия, с учетом корректировки по шкале А, 8-октавных (шумовых) полос практически равносилен восприятию 5-октавных полос, что дает нам право в ЭАР в качестве величины УШ использовать эквивалентные уровни непостоянного (прерывистого и колеблющегося во времени) звукового давления /L Аэкв, дБА, приведенные в и в .

УШ, взятые из Шум-таблиц, являются лишь обобщающими, их можно назвать собственными шумами. Так, например, согласно , для помещений с постоянными рабочими местами на производственных предприятиях /L Аэкв = 80 дБА. Однако для каждого конкретного предприятия необходимы дополнительные расчеты, учитывающие дополнительные, привнесенные шумы -шумы, возникающие в результате работы каких-либо источников шума - агрегатов, станков, или шумы, проникающие через окна, двери и т. д.

ПРИМЕРЫ АКУСТИЧЕСКИХ РАСЧЕТОВ, В УСЛОВИЯХ ВЫСОКОГО ШУМА

Рассмотрим пример. На рисунке 1 изображена элементарная ситуация - производственное помещение с двумя РТ и двумя звуковыми источниками: громкоговорителем и источником шума.

На рисунке изображены две расчетные точки РТ 1 и РТ 2 . Предположим, что в РТ 1 - влияние источника шума, изображенного в верхней правой части рисунка, в силу удаления и экранирования звукопоглощающей конструкцией не значительно.

Рис. 1. Пример, демонстрирующий особенности учета уровней шумов

УРОВЕНЬ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНОЙ ТОЧКЕ

Рассчитаем уровень звукового давления, дБ, в РТ, формируемого громкоговорителем :

L = P o + 10logР вт - 20log (r 1 - 1), (2)

r 1 - расстояние от источника звука (громкоговорителя) до РТ, м. При r o = 1 м, r > 2 м;

1 - коэффициент, учитывающий, что чувствительность громкоговорителя измерена на расстоянии 1 м.

КРИТЕРИИ РАСЧЕТА

Критерием правильности расчета будет выполнение следующих требований :

Звуковые сигналы СОУЭ должны обеспечивать общий уровень звука (уровень звука постоянного шума вместе со всеми сигналами, производимыми оповещателями) не менее 75 дБА на расстоянии 3 м от оповещателя, но не более 120 дБА в любой точке защищаемого помещения. Звуковые сигналы СОУЭ должны обеспечивать уровень звука не менее, чем на 15 дБА выше допустимого уровня звука постоянного шума в защищаемом помещении.

Данное требование содержит 3 условия:

1. Требование к минимальному уровню. Уровень звукового давления громкоговорителя должно быть не ниже 85 дБ:

Р дб > 85 дБ (3)

В случае невыполнения данного условия необходимо выбрать громкоговоритель с большим звуковым давлением.

2. Требование к максимальному уровню. Уровень звукового давления в РТ должно быть не выше 120 дБ:

(Р дб - 20log (r мин - 1))

r мин - расстояние от громкоговорителя до ближайшего слушателя.

В случае невыполнения данного условия можно уменьшить звуковое давление громкоговорителя или использовать распределенную схему расстановки громкоговорителей.

3. Условие правильности ЭАР:

L > УШ + 15, (5)

УШ - уровень шума в помещении, дБ;

15 - запас звукового давления, согласно , дБ.

В случае невыполнения данного условия можно:

■ выбрать громкоговоритель с большей чувствительностью Р o , дБ;

■ выбрать громкоговоритель с большей мощностью Р вт, Вт;

■ увеличить количество громкоговорителей;

■ изменить схему расстановки громкоговорителей.

УЧЕТ ДОПОЛНИТЕЛЬНОГО ШУМА

В РТ 2 влияние источника шума очевидно. Если уровень шума, создаваемый источником шума, УШ и, дБ в РТ, превосходит УШ, дБ в помещении УШ и УШ необходимо учитывать суммарное воздействие двух шумов УШ сум, дБ:

УШ сум = 10log (10 0,1УШ + 10 0,1УШи), (б)

и затем подставить полученный результат в формулу (5), приравняв УШ = УШ сум.

РАСЧЕТ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНОЙ ТОЧКЕ, ФОРМИРУЕМОГО ИСТОЧНИКОМ ШУМА

Из рисунка 1 видно, что источник звука находится на некотором расстоянии, r 3 , м, от РТ. Для расчета УШ и, дБ, воспользуемся результатами, изложенными в :

УШ и =Р ист + 10log (ΧΦ н /Ωr 2 2 + 4Ψ/В ), (7)

P ист - октавный (на частоте 1 кГц) уровень звуковой мощности звукового источника, дБ , берется из спецификаций или технических характеристик на оборудование;

Χ - коэффициент, учитывающий влияние ближнего поля в тех случаях, когда расстояние от источника шума, до РТ, r 3 таблице 2, );

Φ н - фактор направленности источника шума (для источников с равномерным излучением Ф = 1);

Ω - пространственный угол излучения источника, рад. (принимают по таблице 3, );

r 2 - расстояние от громкоговорителя до РТ, м;

Ψ - коэффициент, учитывающий нарушение диффузности звукового поля в помещении, таблица 1;

В - акустическая постоянная помещения, м 2 .

АКУСТИЧЕСКАЯ ПОСТОЯННАЯ ПОМЕЩЕНИЯ

Расчет акустической постоянной помещения В сопряжен с определением основного фонда звукопоглощения или эквивалентной площади звукопоглощения, А, м 2 , формула (3), .

Коэффициент, учитывающий нарушение диффузности звукового поля в помещении, - Ψ зависит от отношения постоянной помещения B к площади ограждающих поверхностей S, таблица 1:

Табл. 1. Коэффициент, учитывающий нарушение диффузности звукового поля помещений (Ψ)

Для приблизительного определения В можно воспользоваться следующей формулой: В = μ * В 1000 ,

В 1000 - постоянная помещения на частоте 1 кГц; μ - частотный множитель, таблица 2.

Табл. 2. Частотный множитель μ

Объем помещения, м 3

Среднегеометрическая частота, кГц

V = 200, 1000

V >> 1000

Постоянная помещения В 1000 для частоты 1 кГц в зависимости от объема помещения V, м 3 , определяется следующим способом:

В 1000 = V/20 - для помещений без мебели с небольшим количеством людей (металлообрабатывающие цеха, машинные залы, испытательные стенды и т. д.);

В 1000 = V/10 - для помещений с жесткой мебелью или с небольшим количеством людей и мягкой мебелью (лаборатории, кабинеты и т. д.);

В 1000 = V/6 - для помещений с большим количеством людей и мягкой мебелью (рабочие помещения административных зданий, жилые комнаты и т. п.);

В 1000 = V/1,5 - для помещений со звукопоглощающей облицовкой потолка и части стен.

Поясним, почему УШ, определяет точность расчетов. Для выбора параметров громкоговорителя или схемы их расстановки используется следующий подход (метод):

1. Выбираем РТ.

2. Определяем УШ в РТ.

3. Определяем ожидаемый уровень звукового давления в РТ.

4. Определяем место установки и расстояние до предполагаемого громкоговорителя.

5. Рассчитываем минимально необходимый уровень звукового давления предполагаемого громкоговорителя.

ДОПОЛНИТЕЛЬНЫЕ ОРГАНИЗАЦИОННЫЕ МЕРОПРИЯТИЯ

При высоких уровнях шумов возникает ситуация, когда использование громкоговорителя становится нерациональным. В этом случае на первый план выступают организационные мероприятия. Так, на основании :

В защищаемых помещениях, где люди находятся в шумо-защитном снаряжении, а также в защищаемых помещениях с уровнем звука шума более 95 дБА звуковые оповещатели должны комбинироваться со световыми оповещателями. Допускается использование световых мигающих оповещателей.

ЭФФЕКТИВНАЯ РАССТАНОВКА ГРОМКОГОВОРИТЕЛЕЙ

Для выполнения полноценного ЭАР одних нормативных требований крайне недостаточно, поэтому приходится вводить дополнительные характеристики. Продемонстрируем некоторые их них :

Ширина диаграммы направленности (ШДН) - угол раскрыва, определяемый из (круговой) диаграммы направленности громкоговорителя, при котором уровень звукового давления уменьшается на 6 дБ относительно рабочей (геометрической) оси громкоговорителя.

Эффективная дальность D, м, звучания громкоговорителя - расстояние от громкоговорителя до точки, звуковое давление r, дБ, в которой превышается УШ на 15 дБ.

Эффективную дальность можно определить как:

D = 10 1/20 (Рдб - УШ -15) + 1, (8) где

Р дб - звуковое давление, развиваемое громкоговорителем на определенной мощности, дБ.

1 - коэффициент, учитывающий, что чувствительность громкоговорителя определяется на 1 метре.

Оперирование приведенными характеристиками (параметрами) позволяет в зависимости от типов громкоговорителей - потолочный, настенный, рупорный - строить различные диаграммы - контуры озвучиваемых площадей. Так, например, для потолочного громкоговорителя эффективной озвучиваемой площадью (контуром) является площадь круга. Для ШДН = 90° радиус такого круга: R = H - 1,5 м, где Н -высота потолков . Для настенных или рупорных громкоговорителей актуальным параметром является эффективная дальность D , м.

ПРИМЕР АКУСТИЧЕСКОГО РАСЧЕТА ДЛЯ СКЛАДСКОГО ПОМЕЩЕНИЯ

На рисунке 2 изображена упрощенная схема складского помещения, для озвучивания которого используются три рупорных громкоговорителя.

Рупорные громкоговорители по сравнению с другими типами имеют ряд преимуществ:

■ класс защиты не ниже IP54 и могут использоваться в неотапливаемых помещениях;

■ высокое звуковое давление, позволяющее работать в условиях высоких шумов;

■ универсальное крепление, позволяющее варьировать результирующей диаграммой направленности. Расстановка громкоговорителей по одной стене (рис. 2),

имеет практическое основание, однако, его необходимо подтвердить расчетами.

ВОЗМОЖНЫЕ АЛГОРИТМЫ РАСЧЕТА

Алгоритм ЭАР (проверки) для РТ 1 может быть следующим:

1. Расчетная точка РТ 1 выбрана правильно - в месте, максимально удаленном от второго громкоговорителя ГР 2 .

2. Удостоверимся, что РТ 1 попадает в область действия диаграммы направленности (ШДН) второго громкоговорителя (ГР 2).

3. Определим УШ в РТ 1 .

4. Рассчитаем уровень звукового давления в РТ 1 , L 1 , дБ, по формуле (2).

5. Проверим выполнение граничных условий (3), (4), (5).

6. В случае выполнения условий (3), (4), (5) расчет для РТ 1 выполнен.

7. В случае невыполнения условий (3), (4), (5) выбирается другой громкоговоритель, меняется схема расстановки громкоговорителей, выполняются дополнительные организационные мероприятия.

Однако, обосновать ЭАР для РТ 1 можно более простым способом:

■ определяем эффективную дальность D , м, для второго громкоговорителя;

■ сравниваем полученное значение D , м, с расстоянием r 1 , м;

■ если D > r 1 , ЭАР для РТ 1 выполнен.

Для РТ 2 алгоритм ЭАР может быть следующим:

1. Расчетная точка РТ 2 выбрана правильно - в месте, наиболее критичном с точки зрения расположения громкоговорителей.

2. Определим УШ в РТ 2 .

3. Удостоверимся, что РТ 2 попадает в область действия диаграмм направленностей второго (ГР 2) или третьего (ГР 3) громкоговорителей.

4. Так как РТ 2 не попадает ни в одну из областей диаграмм, обратимся к геометрическо-лучевой теории.

5. Из рисунка 2 видно, что в РТ 2 попадают 2 луча звуковой энергии, формируемые ГР 2 и ГР 3 и отраженные от второго стеллажа.

Рис. 2. Пример расстановки громкоговорителей для складского помещения

б. Уровень звукового давления L 2 , дБ, в РТ 2 может быть рассчитан следующим способом:

■ рассчитаем уровень звукового давления в точке А, L А, дБ, по формуле (2);

■ рассчитаем уровень звукового давления в точке Б, L Б, дБ, по следующей формуле:

L Б = L А - 20logr 3 + 10log(1 - К погл),

К погл - коэффициент поглощения отражающей поверхности;

■ аналогичным образом рассчитаем уровень звукового давления, формируемый третьим громкоговорителем (ГР 3) в точках В, L B , дБ, и Г, L Г, дБ;

■ рассчитаем уровень звукового давления в РТ 2 , L 2 , дБ: L 2 = 10log (10 0,1LБ + 10 0,1Lг).

ОРГАНИЗАЦИОННЫЕ МЕРОПРИЯТИЯ

Защита от шума строительно-акустическими методами должна обеспечиваться:

■ рациональным с акустической точки зрения решением генерального плана объекта, рациональным архитектурно-планировочным решением зданий;

■ применением ограждающих конструкций зданий с требуемой звукоизоляцией;

■ применением звукопоглощающих конструкций (звукопоглощающих облицовок, кулис, штучных поглотителей);

■ применением звукоизолирующих кабин наблюдения и дистанционного управления;

■ применением звукоизолирующих кожухов на шумных агрегатах;

■ применением акустических экранов;

■ применением глушителей шума в системах вентиляции, кондиционирования воздуха и в аэрогазодинамических установках;

■ виброизоляцией технологического оборудования.

В проектах должны быть предусмотрены мероприятия по защите от шума:

■ в разделе «Технологические решения» (для производственных предприятий)при выборе технологического оборудования следует отдавать предпочтение малошумному оборудованию;

■ размещение технологического оборудования должно осуществляться с учетом снижения шума на рабочих местах, в помещениях и на территориях путем применения рациональных архитектурно-планировочных решений;

■ в разделе «Строительные решения» (для производственных предприятий) на основе акустического расчета ожидаемого шума на рабочих местах должны быть, в случае необходимости, рассчитаны и запроектированы строительно-акустические мероприятия по защите от шума;

■ шумовые характеристики технологического и инженерного оборудования должны содержаться в его технической документации и прилагаться к разделу проекта «Защита от шума»;

■ следует учитывать зависимость шумовых характеристик от режима работы, выполняемой операции, обрабатываемого материала и т. п.;

■ возможные варианты шумовых характеристик должны быть отражены в технической документации оборудования.

В КАЧЕСТВЕ ЗАКЛЮЧЕНИЯ

Мы рассмотрели только часть вопросов, касающихся акустических расчетов. Отдельного рассмотрения требуют вопросы расстановки громкоговорителей, определения времени реверберации помещения, расчета разборчивости. Приведем некоторые рекомендации, касающиеся повышения общей разборчивости речи .

1. Наибольшее влияние на разборчивость речи оказывают естественные шумы.

2. Существенное влияние на разборчивость речи оказывают реверберационные помехи, снижение которых достигается дополнительными (специальными) мероприятиями.

3. Хорошая разборчивость в реверберирующих помещениях с ограниченным звуковым трактом может быть достигнута при разнице между звуковым давлением в РТ и уровнем шума не меньше 6 дБ.

4. На разборчивость существенное влияние оказывает качество выбираемых громкоговорителей. При неравномерности АЧХ громкоговорителя, приближающейся к 10%, разборчивость ухудшается на 7%.

5. Существенное повышение речевой разборчивости может быть достигнуто увеличением доли прямого звука в суммарной звуковой энергии внутри помещения, за счет:

■ повышения локализации звуковых источников;

■ грамотной расстановки звуковых источников (громкоговорителей), учитывающей их направленности и расположение, при котором РТ-точка не сильно удалена от источника и не находится в тени.

ЛИТЕРАТУРА

1. ФЗ № 123, свод правил СП 3.13130.2009. Требования пожарной безопасности к звуковому и речевому оповещению и управлению эвакуацией людей.

2. ФЗ № 123, свод правил СП 133.13330.2012. (Приложение А. Упрощенный расчет числа громкоговорителей в системах оповещения).

3. Кочнов О. В. Электроакустический расчет, выполняемый при проектировании СОУЭ// Материалы XVнаучно-практической конференции «Интеграция науки и практики как механизм развития современного общества». 8-9 апреля 2015.

4. СП 51.13330.2011. Защита от шума. Актуализированная редакция СНиП 23-03-2003. М., 2011.

5. СНиП 23-03-2003. Защита от шума (Sound protection) от 01-01-2004.

6. Кочнов О. В. Расчет разборчивости речи // Материалы XVIII научно-практической конференции «Интеграция науки и практики как механизм развития современного общества». 28-29 декабря 2015.

  • 1.1.5.Государственные нормативные акты об охране труда
  • 1.1.6.Ответственность за нарушение законодательства об охране труда
  • 1.1.7. Государственный надзор и общественный контроль за охраной труда
  • 1.1.8. Общественный контроль за соблюдением законодательства об охране труда
  • Полномочия и права профсоюзов в осуществлении контроля за соблюдением законодательства об охране труда
  • Уполномоченные наемными работниками лица по вопросам охраны труда
  • 1.1.9. Организационные вопросы охраны труда. Органы государственного управления охраной труда
  • 1.1.10. Служба охраны труда предприятия
  • 1.1.11. Комиссия по вопросам охраны труда предприятия
  • 1.1.12. Обучение по вопросам охраны труда
  • 1.1.13. Обучение по вопросам охраны труда при приеме на работу и в процессе работы
  • 1.1.14. Инструктажи по вопросам охраны труда
  • Порядок проведения инструктажей для работников
  • 1.1.15. Стажировка (дублирование) и допуск работников к работе
  • 1.1.16. Производственный травматизм и профессиональные заболевания
  • Специальное расследование несчастных случаев.
  • Расследование и учет хронических профессиональных заболеваний и отравлений.
  • Расследование и учет аварий *
  • 1.1.17. Методы анализа производственного травматизма и профзаболеваемости
  • Основные причины производственного травматизма и профзаболеваемостии мероприятия по их предупреждению
  • 1.1.18. Государственное страхование от несчастного случая и профессионального заболевания
  • Раздел № 2. Основы физиологии, гигиены труда и производственной санитарии
  • 2.1.Общие положения
  • 2.1.1. Законодательство в области гигиены труда
  • 2.1.2. Физиологические особенности различных видов деятельности
  • 2.1.3. Гигиеническая классификация труда
  • 2.2. Микроклимат производственных помещений
  • 2.2.1.Влияние параметров микроклимата на организм человека
  • 2.2.2. Нормализация параметров микроклимата
  • 2.3. Загрязнение воздуха производственных помещений
  • 2.3.1. Влияние вредных веществ на организм человека
  • 2.3.2. Нормирование вредных веществ
  • 2.3.3. Основные мероприятия по нормализации воздушной среды
  • 2.4. Вентиляция производственных помещений
  • 2.4.1. Назначение и классификация систем вентиляции
  • 2.4.2. Естественная вентиляция
  • 2.4.3. Искусственная вентиляция
  • Местная вентиляция
  • Методы расчета систем искусственной вентиляции
  • Определение выделений тепла. Расчет воздухообмена при проектировании общеобменной вентиляции и кондиционирования воздуха.
  • Характеристика остекления
  • 2.5. Организация производственного освещения
  • 2.5.1. Общие требования и рекомендации по организации производственного освещения Основные светотехнические понятия и единицы
  • 2.5.2. Организация естественного освещения
  • 2.5.3. Организация искусственного освещения
  • Расчет искусственного освещения
  • Методы расчета искусственного освещения.
  • 2.6.Производственный шум и методы борьбы с ним
  • Нормирование шума
  • 2.6.1. Общие методы борьбы с производственным шумом
  • Акустический расчет
  • 3 Раздел Основы техники безопасности
  • 1. Безопасность технологических процессов.
  • 2. Безопасность производственного оборудования.
  • 3. Обеспечение электробезопасности на промышленных предприятиях.
  • 4.Защита от статического электричества, в том числе и от атмосфер­ного электричества.
  • 5.Безопасность устройства и эксплуатации подъемно-транспортного оборудования.
  • 6. Безопасность использования сосудов и аппаратов, работающих под давлением (баллоны, паровые и водогрейные котлы, компрессорные установки, цистерны и др.).
  • Раздел 4. Пожарная безопасность
  • 4.1. Основные сведения о пожарной и взрывной безопасности
  • 4.2. Пожароопасность материалов и веществ
  • 4.3.Категории помещений и зданий и классы зон по пожарной и взрывной опасности
  • 4.3.1 Категории помещений и зданий по пожарной и взрывной опасности по онтп 24-86
  • 4.4. Тушение пожаров
  • Список рекомендуемой литературы
  • Раздел 1 Правовые и организационные вопросы охраны труда……..11
  • Раздел 2 Основы физиологии, гигиены труда и
  • Раздел 3 Основы техники безопасности……………………….......151
  • Раздел 4 Пожарная безопасность……………………………….....164
  • Акустический расчет

    Общие технические и организационные методы борьбы с шумом и вибрациями на производстве

    Борьба с шумом и вибрациями на промышленном предприятии - это комплекс инженерно-технических мероприятий. Выявление источников и причин возникновения шума и вибраций должно быть совмещено с регистрацией и изучением их спектров. Только опираясь на исследования амплитудно-частотных характеристик, можно наметить и провести в жизнь технические мероприятия, направленные на устранение причин возникновения вибраций и шума. Расстановка оборудования в цехах должна производиться не только с учетом технологического процесса, удобства монтажа, ремонта, но и с учетом требований обеспечения здоровых условий труда.

    Шумное оборудование следует группировать отдельно и устанавливать или в изолированном помещении, или в отдельной части цеха со звукоизолирующими или экранирующими перегородками.

    При разработке технологических процессов, а также при проектировании участков, цехов, оборудования выполняется расчет ожидаемых шумовых полей в местах длительного пребывания людей.

    Для этого необходимо выполнить акустический расчет, который включает:

      выявление источников шума и определение их шумовых характеристик;

      выбор расчетных точек в помещении, для которых производится расчет допустимых уровней звукового давления для этих точек;

      определение ожидаемых уровней звукового давления в расчетных точках до осуществления мероприятий по снижению шума с учетом снижения уровней звуковой мощности по пути распространения шума;

      определение требуемого снижения уровня звукового давления в расчетных точках;

      выбор мероприятий для обеспечения требуемого снижения уровней звукового давления в расчетных точках;

      расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок, звукоизолирующих кожухов и т. п.).

    В начале расчета необходимо выявить все источники шума в производственных помещениях, обратив особое внимание на особо мощные источники. Шумовые характеристики оборудования и установок указываются заводом - изготовителем в прилагаемой технической документации.

    Расчетные точки внутри помещения выбирают по ГОСТ 12.1.050-86. ССБТ «Методы измерения шума на рабочих местах».

    В зоне постоянного пребывания людей выбирают не менее двух расчетных точек на высоте 1,5 м от уровня пола или рабочей площадки. При одном источнике шума в помещении первая расчетная точка берется на рабочем месте, при нескольких однотипных источниках - на рабочем месте в средней части помещения. Вторая расчетная точка берется в зоне постоянного пребывания людей, не связанных с работой оборудования. Если имеется несколько различных источников, отличающихся друг от друга по октавным уровням звуковой мощности более чем на 15 дБ хотя бы в одной октавной полосе, то на рабочих местах берутся две расчетные точки: у источников с максимальным и минимальным уровнями шума. Для цехов с групповым размещением однотипного оборудования расчетные точки берутся в центре каждой группы. Допустимые уровни звукового давления принимаются на основании ГОСТ 12.1.003-86, ССБТ «Шум. Общие требования безопасности».

    Определение ожидаемых уровней звукового давления в расчетных точках .

    При проведении расчетов ожидаемых уровней звукового давления в производственных помещениях наиболее часто расчетная точка находится в том же помещении, где установлен источник шума или в соседнем помещении.

    А. Расчетная точка находится в помещении с одним источником шума.

    L = L P +101g(Ф/4r 2 +4/B) (2.27)

    где L - уровень звукового давления, дБ;

    L p - уровень звуковой мощности источника шума, дБ;

    Ф - фактор направленности источника для направления в точку наблюдения;

    r-расстояние от геометрического центра источника до расчетной точки,м;

    В - постоянная помещения (определяется по графику зависимости от объема помещения), м 2 ;

    Б. Расчетная точка находится в помещении с несколькими источниками шума.

    L=10lg(іФ/4г 2 +4/Ві) (2.28)

    где i = 10 0,1 Lp і - сумма уровней звуковой мощности для i - того источника шума;

    Lpi -уровень звуковой мощности i - того источника, дБ;

    m i - число источников, находящихся в зоне прямой видимости из расчетной точки;

    п - общее число источников в помещении с учетом среднего коэффициента одновременности работы оборудования.

    В . Расчетная точка расположена в изолируемом от источников шума помещении.

    Если источники (или один источник) шума расположены в смежном с изолируемым помещении, а шум проникает в изолируемое помещение через ограждающие конструкции, то ожидаемые уровни в расчетной точке определяются по формуле:

    L = Lр.сум - 10 lg Ви + 10 lg Sorp - R - 10 lg Вш + 6, дБ (2.29)

    Lp cyм=101g Lpi (2.30)

    Lp сум - суммарный уровень звуковой мощности, излучаемый всеми источниками, находящимися в рассматриваемом шумном помещении, дБ;

    m - общее количество источников шума; (если источник шума один, m = 1, Lp сум = Lp, где Lp - уровень звуковой мощности этого источника);

    Ви, Вш - соответственно постоянные изолируемого и шумного помещений, м 2 ;

    Sorp - площадь ограждения, м 2 ;

    R-звукоизолирующая способность ограждения, через которое шум проникает в изолируемое помещение, дБ.

    R = 201gQ + 201gf-54, (2.31)

    где Q - вес 1-го м 2 ограждения заданной толщины, кг / м 2 ;

    f- частота звука, Гц.

    f rp =----------- , (2.32)

    где f г p - частота волнового совпадения, от которой звукоизолирующая способность не будет возрастать, Гц;

    с 1 - скорость распространения звуковых волн, м/с;

    h - толщина преграды, см.

    Определение требуемого снижения уровней звукового давления

    Требуемое снижение уровней звукового давления L определяется по формуле:

    L= L-L доп ()

    где L-измеренный уровень звукового давления на рабочих местах действующего предприятия, определенный в расчетных точках (см. п. 3);

    L доп -допустимые по нормам уровни звукового давления, дБ по ГОСТ 12.1.003-86. «Шум. Общие требования безопасности».

    Методы и средства коллективной и индивидуальной

    защиты от шума

    После получения требуемого снижения уровней звукового давления необходимо выбрать метод защиты от шума.

    Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

    Методы относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Снижение шума можно достичь только путем обесшумливания всего оборудования с высоким уровнем шума.

    Работу относительно обесшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

    Борьба с шумом в источнике его возникновения – наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

    Архитектурно-планировочный аспект коллективной защиты от шума – предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

    Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т.д.

    Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

    Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков, что защищает рабочее место и человека от непосредственного влияния прямого звука.

    Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Звукопоглощение используется при акустической обработке помещений.

    Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы; устанавливаются резонаторные экраны, т.е. искусственные поглотители. Эффект акустической обработки больше в низких помещениях (где высота не превышает 6м). Акустическая обработка позволяет снизить шум на 8 дБА.

    Уровень звука после применения звукопоглощающей облицовки рассчитывают по формуле:

    L=10, (2.32)

    где В – постоянная помещения, м 2 ;

    В 1 – постоянная помещения после акустической обработки, м 2 .

    В 1 =
    , (2.33)

    Где А 1 – эквивалентная площадь звукопоглощения поверхностями не занятыми звукопоглощающей облицовкой;

    - добавочное звукопоглощение, вносимое звукопоглощающей облицовкой;

    А 1 =(S-S обл) – эквивалентная площадь звукопоглощения поверхностями не занятыми звукопоглощающей облицовкой;

    - средний коэффициент звукопоглощения акустически обработанного помещения.

    = S обл обл, (2.34)

    S обл – площадь звукопоглощения облицовки;

    обл – реверберационный коэффициент звукопоглощающей облицовки.

    А 1 =В ш S/ В ш +S, (2.35)

    S – общая площадь всех поверхностей помещения

    =А 1
    /S (2.36)


    Оптимизация расположения громкоговорителей в комнате прямоугольной формы

    Для достижения высокого качества звуковоспроизведения, акустические характеристики комнаты для прослушивания необходимо приблизить к определенным оптимальн м значениям. Это достигается формированием "акустически правильной" геометрии помещения, а также с помощью специальной акустической отделки внутренних поверхностей стен и потолка.

    Но очень часто приходится иметь дело с комнатой, форму которой изменить уже невозможно. При этом собственные резонансы помещения могут крайне негативно повлиять на качество звучания аппаратуры. Вважным инструментом для снижения влияния комнатных резонансов является оптимизация взаимного расположения акустических систем относительно друг друга, ограждающих конструкций и зоны прослушивания.

    Предлагаемые калькуляторы предназначены для расчетов в прямоугольных симметричных помещениях с низким фондом звукопоглощения.


    Применение на практике результатов данных расчетов позволит уменьшить влияние комнатных мод, улучшить тональный баланс и выровнять АЧХ системы "АС-комната" на низких частотах.
    Необходимо отметить, что результаты расчетов не обязательно приводят к созданию "идеальной" звуковой сцены, они касаются только коррекции акустических дефектов, вызванных, прежде всего, влиянием нежелательных комнатных резонансов.
    Но результаты расчетов могут стать хорошей отправной точкой для дальнейшего поиска оптимального месторасположения АС с точки зрения индивидуальных предпочтений слушателя.

    Определение площадок первых отражений


    Слушатель, находящийся в комнате для прослушивания музыки, воспринимает не только прямой звук, излучаемый акустическими системами, но и отражения от стен, пола и потолка. Интенсивные отражения от некоторых участков внутренних поверхностей комнаты (площадок первых отражений) взаимодействуют с прямым звуком АС, что приводит к изменению частотной характеристики звука, воспринимаемого слушателем. При этом на некоторых частотах происходит усиление звука, а некоторых его значительное ослабление. Этот акустический дефект, называемый "гребенчатой фильтрацией", приводит к нежелательному "окрашиванию" звука.

    Управление интенсивностью ранних отражений позволяет улучшить качество звуковой сцены, сделать звучание АС более ясным и детальн м. Наиболее важны ранние отражения от площадок, расположенных на боковых стенах и потолке между зоной прослушивания и АС. Кроме того, большое влияние на качество звука могут оказать отражения от тыловой стены, если зона прослушивания расположена к ней слишком близко.

    На участках расположения площадок ранних отражений рекомендуется размещать звукопоглощающие материалы или звукорассеивающие конструкции (акустические диффузоры). Акустическая отделка площадок ранних отражений должна быть адекватна частотному диапазону, в котором более всего наблюдаются акустические искажения (эффект гребенчатой фильтрации).

    Линейные размеры применяемых акустических покрытий должны быть на 500-600 мм больше размеров площадок первых отражений. Параметры необходимой акустической отделки в каждом конкретном случае рекомендуется согласовать с инженером-акустиком.

    "

    Расчет
    резонатора Гельмгольца

    Резонатор Гельмгольца является колебательной системой с одной степенью свободы, поэтому он обладает способностью отзываться на одну определенную частоту, соответствующую его собственной частоте.

    Характерной особенностью резонатора Гельмгольца является его способность совершать низкочастотные собственные колебания, длина волны которых значительно больше размеров самого резонатора.

    Это свойство резонатора Гельмгольца используется в архитектурной акустике при создании так называемых щелевых резонансных звукопоглотителей (Slot Resonator). В зависимости от конструкции резонаторы Гельмгольца хорошо поглощают звук на средних и низких частотах.

    В общем случае конструкция поглотителя представляет собой деревянный каркас, смонтированный на поверхности стены или потолка. На каркасе закрепляется набор деревянных планок, между которыми оставляются зазоры. Внутреннее пространство каркаса заполняется звукопоглощающим материалом. Резонансная частота поглощения зависит от сечения деревянных планок, глубины каркаса и эффективности звукопоглощения изоляционного материала.

    fo = (c/(2*PI))*sqrt(r/((d*1.2*D)*(r+w))) , где

    w - ширина деревянной планки,

    r - ширина зазора,

    d - толщина деревянной планки,

    D - глубина каркаса,

    с - скорость звука в воздухе.

    Если в одной конструкции применять планки различной ширины и закреплять их с неодинаков ми зазорами, а также выполнять каркас с переменной глубиной, можно построить поглотитель, эффективно работающий в широкой полосе частот.

    Конструкция резонатора Гельмгольца достаточно проста и может быть собрана из недорогих и доступных материалов непосредственно в музыкальной комнате или в студийном помещении во время производства строительных работ.

    "

    Расчет панельного НЧ-поглотителя конверсионного типа (НЧКП)

    Панельный поглотитель конверсионного типа является достаточно популярным средством акустической обработки музыкальных комнат благодаря простой конструкции и довольно высокой эффективности поглощения в области низких частот. Панельный поглотитель представляет собой жесткий каркас-резонатор с замкнутым объемом воздуха, герметично закрытый гибкой и массивной панелью (мембраной). В качестве материала мембраны, обычно применяют листы фанеры или MDF. Во внутреннее пространство каркаса помещается эффективный звукопоглощающий материал.

    Звуковые колебания приводят в движение мембрану (панель) и присоединенный объем воздуха. При этом кинетическая энергия мембраны преобразуется в тепловую энергию за счет внутренних потерь в материале мембраны, а кинетическая энергия молекул воздуха преобразуется в тепловую энергию за счет вязкого трения в слое звукопоглотителя. Поэтому мы называем такой тип поглотителя конверсионным.

    Поглотитель представляет собой систему масса-пружина, поэтому он обладает резонансной частотой, на которой его работа наиболее эффективна. Поглотитель может быть настроен на желаемый диапазон частот путем изменения его формы, объема и параметров мембраны. Точн й расчет резонансной частоты панельного поглотителя является сложной математической задачей, и результат зависит от большого количества исходных параметров: способа закрепления мембраны, её геометрических размеров, конструкции корпуса, характеристик звукопоглотителя и т.п.

    Тем не менее, использование некоторых допущений и упрощений позволяет достичь приемлемого практического результата.

    В таком случае, резонансную частоту fo можно описать следующей оценочной формулой:

    fo=600/sqrt(m*d) , где

    m - поверхностная плотность мембраны, кг/кв.м

    d - глубина каркаса, см

    Данная формула справедлива для случая, когда внутреннее пространство поглотителя заполнено воздухом. Если внутрь поместить пористый звукопоглощающий материал, то на частотах ниже 500 Гц процессы в системе перестают быть адиабатическими и формула трансформируется в другое соотношение, которое и применяется в он-лайн калькуляторе "Расчет панельного поглотителя":

    fo=500/sqrt(m*d)

    Заполнение внутреннего объема конструкции пористным звукопоглощающим материалом снижает добротность (Q) поглотителя, что приводит к расширению его рабочего диапазона и увеличению эффективности поглощения на НЧ. Слой звукопоглотителя не должен прикасаться к внутренней поверхности мембраны, также желательно оставить воздушный зазор между звукопоглотителем и задней стенкой устройства.
    Теоретический рабочий диапазон частот панельного поглотителя расположен в пределах +/- одна октава относительно расчетной резонансной частоты.

    Необходимо отметить, что в большинстве случаев описанного упрощенного подхода вполне достаточно. Но иногда решение ответственной акустической задачи требует более точного определения резонансных характеристик панельного поглотителя с учетом сложного механизма изгибных деформаций мембраны. Это требует проведения более точных и достаточно громоздких акустических расчетов.

    "

    Расчет размеров студийных помещений в соответствии с рекомендациями EBU/ITU, 1998

    За основу взята методика, разработанная в 1993 году Робертом Волкером (Robert Walker) после серии исследований, проведенных в инженерном департаменте ВВС (Research Department Engineering Division of ВВС). В результате была предложена формула, регулирующая соотношение линейных размеров помещения в достаточно широких пределах.

    В 1998 году данная формула была принята в качестве стандарта Европейским Радиовещательн м Союзом (European Broadcasting Union, Technical Recommendation R22-1998) и Международным Телекоммуникационным Союзом (International Telecommunication Union Recommendation ITU-R BS.1116-1, 1998) и рекомендована к применению при строительстве студийных помещений и музыкальных комнат прослушивания.
    Соотношение выглядит следующим образом:

    1.1w/h <= l/h <= 4.5w/h - 4,

    l/h < 3, w/h < 3

    где l - длина, w - ширина, и h - высота помещения.

    Кроме того, должны быть исключены целочисленные соотношения длинны и ширины помещения к его высоте в пределах +/- 5%.

    Все размеры должны соответствовать расстояниям между основными ограждающими конструкциями помещения.

    "

    Расчет диффузора Шредера

    Проведение расчетов в предлагаемом калькуляторе подразумевает ввод данных в диалоговом режиме и дальнейшее выведение результатов на экран в виде диаграммы. Расчет времени реверберации производится по методике, изложенной в СНиП 23-03-2003 "Защита от шума" в октавных полосах частот по формуле Эйринга (Carl F. Eyring):

    Т (сек) = 0,163*V / (−ln(1−α)*S + 4*µ*V)

    V - объем зала, м3
    S - суммарная площадь всех ограждающих поверхностей зала, м2
    α - средний коэффициент звукопоглощения в помещении
    µ - коэффициент, учитывающий поглощение звука в воздухе

    Полученное расчетное время реверберации графически сравнивается с рекомендуемым (оптимальным) значением. Оптимальным называют такое время реверберации, при котором звучание музыкального материала в данном помещении будет наилучшим или при котором разборчивость речи будет наивысшей.

    Оптимальные значения времени реверберации нормируются соответствующими международными стандартами:

    DIN 18041 Acoustical quality in small to medium-sized rooms, 2004
    EBU Tech. 3276 - Listening conditions for sound programme, 2004
    IEC 60268-13 (2nd edition) Sound system equipment - Part 13, 1998