«Революционная разработка»: в чём уникальность российской космической ядерной установки. Взаимосвязь систем нагрева и охлаждения в космических кораблях

При освоении космоса ученые и инженеры столкнулись со множеством задач, которые не встретишь на Земле, в разных отраслях знаний. Мне, как человеку работающему с климатической техникой интересно, как были решены задачи в теплотехнической сфере, учитывая температурный космический дуализм. Случайно я наткнулся на интересную советскую книжку и с одним из решений этой проблемы я вас хотел познакомить на ее материалах. А именно, с системой терморегулирования советской орбитальной станция «Салют-6».

Орбитальная станция "Салют-6"

Немного теории и проблематики:
"Решая проблему терморегулирования космического аппарата, конструктор находится как бы в порочном круге. Действительно, за время полета аппарата плоскость его орбиты постоянно изменяет свое положение относительно направления на Солнце. Полет может проходить в течение длительного времени только по освещенной Солнцем орбите или по орбите, имеющей участок тени. При этом на солнечной орбите на аппарат будут не только поступать значительные внешние тепловые потоки, но и его приборы, интенсивно работая, могут выделять максимальное количество тепла . В тени же Земли, наоборот, внешние потоки, а также тепловыделение находящихся в дежурном режиме приборов могут быть минимальными .
Спасая от переохлаждения космический аппарат на теневой стороне, конструктор может «укутать его шубой», но тогда на солнечной стороне нельзя будет избавиться от лишнего тепла и аппарат перегреется: закипит электролит в аккумуляторах, выйдут из строя различного рода элементы бортовой аппаратуры и т. д. Какой же выход из этого противоречия ? Он прост, хотя и кажется на первый взгляд парадоксальным. Его мы и рассмотрим в следующем разделе.
НАГРЕТЬ, ЧТОБЫ... ОХЛАДИТЬ
В конструкторских бюро, занимающихся проектированием космических аппаратов, нередко можно услышать примерно такой разговор между специалистом, отвечающим за энергетику объекта, и тепловиком, разрабатывающим его тепловую защиту.

ТЕПЛОВИК: Как показали уточненные расчеты, один из приборов, работающих в открытом космосе, перегревается. Для того чтобы его охладить, мы просим выделить дополнительно два ватта мощности для его подогрева.
ЭНЕРГЕТИК: Конечно, резервы энергетики на борту объекта у нас. ничтожны, но два ватта мы вам, разумеется, выделим.

Непосвященному этот разговор покажется странным: ведь прибор, о котором идет речь, перегревается... Зачем же его тогда подогревать?
Попытаемся разобраться в этом вопросе. Предположим, что на внешней стороне корпуса космического аппарата установлен какой-либо прибор (например, оптический датчик системы ориентации). Этот прибор изолирован от корпуса аппарата и имеет свою температуру, определяемую теми внешними и внутренними тепловыми потоками, о которых уже говорилось ранее. Для того чтобы этот прибор в тени Земли не «замерзал», его закрывают «шубой», практически не пропускающей тепло. При этом, разумеется, оптические «окна» прибора остаются открытыми, а следовательно, на солнечной стороне орбиты на них могут поступать тепловые потоки. Кроме того, при работе прибора возникает его внутреннее тепловыделение.
Все это тепло необходимо «сбросить» в космос, так чтобы температура прибора не превышала, скажем, +40° С. Для этого на одной стороне его поверхности в «шубе» делают специальные вырезы, т. е. создают радиационные поверхности, нанося на них соответствующие лакокрасочные покрытия. Эти поверхности желательно размещать на той стороне прибора, которая вообще не освещается Солнцем. Но если этого сделать нельзя, что чаще всего и бывает на практике, не беда - рассмотренный выше эффект цилиндра поможет решить эту задачу. Выбирая величину площади радиационной поверхности, необходимую для сброса избыточного тепла, можно обеспечить максимальную температуру прибора ниже ее допустимого верхнего предела. Но «сброс» тепла с радиационной поверхности будет происходить также и в тени Земли. При этом может оказаться, что прибор на теневом участке орбиты не работает, т. е. не выделяет тепла.
В результате он будет охлаждаться, и нет другого выхода, кроме как с помощью автоматически включаемого обогревателя его нагревать. Если нужно на несколько градусов снизить максимальную температуру прибора, необходимо соответствующим образом увеличить площадь радиационной поверхности, а значит, и увеличить мощность обогревателя. Вот почему в приведенном разговоре энергетик не только совершенно спокойно отнесся к, казалось бы, абсурдной просьбе тепловика, но и удовлетворил ее.
«Сбросить» тепло в космос с радиационной поверхности - это еще всего лишь одна задача. Вторая состоит в том, чтобы подвести к ней тепло от тепловыделяющего элемента с допустимым перепадом температур между ними. В идеальном случае тепловыделяющие элементы желательно устанавливать на радиационной поверхности. Однако на практике это сделать не всегда удается. Если такой элемент располагается вдали от радиационной поверхности, то передающийся теплопроводностью тепловой поток на пути от элемента к поверхности должен преодолеть некоторое тепловое сопротивление. Оно тем больше, чем меньше теплопроводность материала, площадь поперечного сечения тепло-вода и. больше расстояние передачи этого потока.
Увеличение теплового сопротивления приводит к тому, что температура тепловыделяющего элемента будет увеличиваться при той же температуре радиационной поверхности. В результате может случиться так, что температура корпуса прибора находится в допустимом диапазоне, а тепловыделяющий элемент тем не менее перегревается. Для небольших приборов, работающих в открытом космосе, эта проблема остро не стоит, так как расстояние от их тепловыделяющих элементов до радиационной поверхности, как правило, оказывается сравнительно небольшим. Установка этих элементов на корпусе прибора, выбор высокотеплопроводного материала для корпуса, создание в ряде случаев тепловодов - вот те методы, которые позволяют избежать нежелательных в этом случае явлений.

Решение проблемы терморегулирования советских космических кораблей и станций:
Иначе обстоит дело в гермоотсеках космических кораблей и станций. Большие расстояния между отдельными частями этих гермоотсеков создают серьезные трудности при попытке передать тепло от приборов к радиационной поверхности с помощью теплопроводности. Кроме того, большие размеры корпуса такого космического аппарата приводят к значительному разбросу температур по радиационной поверхности: та ее часть, которая освещена Солнцем, может на десятки градусов нагреваться сильнее части, находящейся в тени. В этом случае приборы, размещенные в гермоотсеке, могут либо перегреваться за счет дополнительного теплообмена с «горячей» частью поверхности корпуса, либо, наоборот, переохлаждаться из-за передачи тепла к «холодной» части.
Поэтому для крупных космических аппаратов конструкторы избрали другой путь поддержания заданного температурного диапазона приборов. В гермоотсеке устанавливается вентилятор, который, обдувая приборы газом (воздухом гермоотсека), «снимает» с них тепло, а также выравнивает температуры по их поверхности. Далее «снятое» тепло можно передать радиационной поверхности, расположенной прямо на корпусе гермоотсека, подобно тому, как это делается иногда в приборах, работающих в открытом космосе.
Как уже отмечалось, при этом неминуемо потребуются расходы электроэнергии на обогреватель атмосферы гермоотсека. Чтобы избежать этих неоправданных потерь, можно па радиационной поверхности разместить теплозащитный экран типа жалюзи. Когда температура приборов становится сравнительно высокой, специальный датчик подаст сигнал электромотору, открывающему жалюзи, и избыточное тепло начнет излучаться в космос. После того как приборы охладятся, этот же датчик подаст команду и жалюзи закроются, прекратив тем самым отвод тепла от гермоотсека.
Такая система терморегулирования достаточно проста и в то же время эффективна. Она в ряде случаев применяется на космических аппаратах. Однако использование жалюзи - не единственный принцип регулирования температуры в гермоотсеках.

На рис. 4 приведена принципиальная схема системы терморегулирования советской орбитальной станция «Салют-6» . Весьма большие размеры ее гермоотсека, значительные тепловые мощности, выделяемые ее аппаратурой и экипажем, вызывают существенные трудности в решении проблемы обеспечения ее теплового режима. Для вентиляции станции конструкторам пришлось предусмотреть на ней несколько десятков вентиляторов. Тепло, снимаемое движущимся под напором вентиляторов воздухом, передается в теплообменнике (5) теплоносителю, циркулирующему по тракту контура обогрева (1), основная задача которого состоит в обогреве отдельных элементов конструкции станциию
Так, например, тепло из этого контура передается в теплообменниках (4) промежуточным контурам (10), служащим для обогрева транспортных космических кораблей «Союз», «Прогресс», состыкованных со станцией. Необходимость такого обогрева связана с тем, что аппаратура этих кораблей в ходе совместного полета со станцией работает в ненапряженном, дежурном режиме и мало выделяет тепла. Система терморегулирования станции объединяется с системой терморегулирования транспортного корабля с помощью специальных гидроразъемов стыковочного агрегата (7), соединяющих тракты гидромагистрали обоих аппаратов.
Теплоноситель контура обогрева циркулирует также по стенкам станции (9), подогревая охлажденные и охлаждая нагретые их части, или, другими словами, выравнивая их температуры. Если в кабине станции выделяется слишком много тепла и температура ее воздуха повышается, вводится в действие теплообменник (11), в котором избыточное тепло передается из контура обогрева в контур охлаждения (2). Циркулирующий по трактам последнего теплоноситель переносит полученное в теплообменнике (11) тепло на радиационную поверхность (8), излучающую его в космос. Расход теплоносителя через теплообменник (11) можно регулировать с помощью специального крана-регулятора и тем самым менять степень охлаждения жидкости в контуре обогрева.
Когда на станции нет экипажа и ее аппаратура выделяет мало тепла, температура воздуха в гермоотсеке понижается. Для того чтобы она не опустилась ниже допустимого предела, в составе системы терморегулирования предусмотрен электрообогреватель (13).



Из атмосферы станции следует удалять влагу, выделяющуюся, например, при дыхании космонавтов. Для решения этой задачи служат специальные холодильно-сушильные аппараты (6). Влага оседает на охлаждаемых до температуры порядка 5°С поверхностях этих аппаратов, собирается в емкости, а затем подается в систему, регенерирующую из конденсата воду. Охлаждение этих поверхностей осуществляется с помощью контура (3), теплоноситель которого отдает свое избыточное тепло в теплообменнике (12) контуру (2).
Конечно, теплоноситель по различным контурам прокачивается гидронасосами. Так как при изменении температуры жидкости изменяется и занимаемый ею объем, т. е. меняется давление в охлаждающих трактах, в системе терморегулирования предусмотрен компенсатор объема.
В состав холодильно-сушильных агрегатов (6) и теплообменника (5) входят вентиляторы, направляющие воздух между трубками теплообменника, и регулятор расхода воздуха, представляющий собой такую же шторку с приводом, какая применялась на космических кораблях «Восток», «Восход». Таким образом, на станции производится автоматическое регулирование и температуры жидкости во внутреннем контуре охлаждения, которая поддерживается с точностью ±2° С относительно одного из ее номинальных значений: 5, 7 и 9° С, и температуры воздуха, составляющей в жилых объемах станции 18 - 25° С .
Система терморегулирования транспортного космического корабля. «Союз» состоит примерно из тех же блоков, что и у станции «Салют». В ее состав входят два основных жидкостных контура: внутренний, предназначенный для терморегулирования жилых отсеков, и внешний, служащий для отвода избыточного тепла от гермоотсека в космосе. Тепло снимается с тепловыделяющих элементов с помощью движущегося под напором вентиляторов воздуха и передается в газожидкостном теплообменнике жидкости, «прогоняемой» с помощью гидронасосов по гидромагистрали. С помощью жидкости термостатируются стенки агрегатного отсека.
Избыточное тепло передается в жидкостно-жидкостном теплообменнике внешнему контуру и «сбрасывается» в космос с радиационной поверхности. Температура жидкости внутреннего контура, как и на станции «Салют», регулируется с помощью автоматики и регуляторов. Это позволяет поддерживать на необходимом уровне температуру стенок холодильно-сушильного агрегата, а значит, и уровень влажности воздуха в кабине. Температура воздуха в кабине корабля также регулируется автоматически, подобно тому, как это делается на станции «Салют».
Для обогрева корабля «Союз» при его полете совместно со станцией «Салют» на нем предусмотрен также вспомогательный контур системы терморегулирования.

По материалам книги Г. М. Салахутдинова "ТЕПЛОВАЯ ЗАЩИТА В КОСМИЧЕСКОЙ ТЕХНИКЕ " Издательство «Знание» Москва 1982.

Изобретение относится к системам терморегулирования (СТР), главным образом мощных телекоммуникационных спутников. СТР содержит замкнутый циркуляционный контур с теплоносителем. Контур образован жидкостными трактами электронасосного агрегата, коллекторов панелей радиаторов, приборных панелей и соединительных трубопроводов. Часть контура выполнена по параллельной схеме соединения жидкостных трактов, имеющей две параллельные ветви с различной длиной. В ветви с меньшей длиной часть участков соединительных трубопроводов выполнена с уменьшенным внутренним диаметром. Суммарная длина этих участков рассчитывается по определенной математической формуле. Технический результат изобретения состоит в снижении относительной массы СТР и повышении надежности ее работы при эксплуатации на орбите. 3 ил.

Рисунки к патенту РФ 2513324

Предложенное изобретение относится к космическим аппаратам (КА) и может быть использовано при создании мощных телекоммуникационных спутников, которые содержат системы терморегулирования (СТР), включающие замкнутые циркуляционные контуры с теплоносителем.

Циркуляционные контуры СТР современных телекоммуникационных спутников, например, согласно патенту Российской Федерации (РФ) № 2362713 , включают в себя коллекторы четырех панелей радиаторов модулей полезной нагрузки и служебных систем и коллекторы шести приборных панелей, расположенных между указанными панелями радиаторов.

Когда отводимое в космическое пространство избыточное тепло от работающих приборов не превышает 5000 Вт, вышеуказанные коллекторы панелей (их жидкостные тракты) располагают на борту спутника по последовательной схеме соединений жидкостных трактов и существующий квалифицированный на предыдущих разработках электронасосный агрегат(ЭНА) обеспечивает требуемый расход теплоносителя в жидкостных трактах (например, с внутренним диаметром, равным 16 мм), гарантируя комфортные рабочие температуры приборов в условиях эксплуатации КА на орбите.

Как показал анализ вновь разрабатываемого телекоммуникационного спутника, когда необходимо, например, отводить в космическое пространство избыточное тепло в количестве 10000 Вт, для применения в составе разрабатываемой СТР квалифицированного ЭНА (разработка нового более мощного ЭНА - это трудоемкий, сложный и длительный технологический процесс) необходимо коллекторы приборных панелей располагать по параллельной схеме соединений жидкостных трактов. При этом при оптимальной компоновке КА (с точки зрения обеспечения минимальных массовых затрат) компоновка приборов на панелях не позволяет выполнить параллельные ветви с одинаковой длиной (с одинаковыми гидравлическими сопротивлениями), например, одна из ветвей длиннее другой до 30% ( 20 м): следовательно, в длинной ветви при одинаковых внутренних диаметрах тракта будет уменьшенный до 15% расход теплоносителя; т.е. в этом случае отвод избыточного тепла от приборов с длинной ветвью будет происходить при более повышенной рабочей температуре, что неприемлемо с точки зрения обеспечения высоконадежной работы всех приборов.

В этом случае для обеспечения одинаковых расходов в параллельных ветвях или в одной из них необходимо предусмотреть диафрагму (см. раскрывающиеся панели радиатора с образованием параллельных ветвей согласно патенту РФ № 2369537 - в ветвях радиатора предусматривают соответствующие диафрагмы (дроссельные шайбы), например, в конструкции согласно листу 140 справочника Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1975 .

В этом случае, как показал всесторонний анализ,:

1) ухудшается надежность работы СТР на орбите, обусловленная тем, что при изготовлении перед заправкой жидкостные тракты промываются с целью удаления механических частиц циркуляцией рабочей жидкости через жидкостные тракты, в т.ч. через диафрагму (см. фиг.1, где 1 - соединительный трубопровод короткой ветви; 2 - диафрагма; 3 - направление движения рабочей жидкости при промывке или теплоносителя при работе СТР; 4 - механические частицы), и часть механических частиц будет задерживаться в тупиковых зонах у стенки диафрагмы, т.е. не будет удаляться из жидкостного тракта СТР и в дальнейшем после воздействия вибрационных нагрузок участка выведения механические частицы попадают в циркулирующий теплоноситель и могут привести к заклиниванию гидронасоса, т.е. к выходу из строя СТР и КА в целом;

2) наличие диафрагмы усложняет конструкцию и не обеспечивает уменьшение массы СТР, т.к. это актуально в связи с созданием более мощного КА.

Таким образом, существенными недостатками известной согласно СТР в случае использования ее для более мощных КА являются недостаточно высокая надежность работы СТР на орбите и не обеспечивается снижение массы СТР.

Целью предложенного технического решения является устранение вышеуказанных существенных недостатков.

Поставленная цель достигается тем, что СТР КА, содержащая замкнутый циркуляционный контур с теплоносителем, включающим в себя жидкостные тракты электронасосного агрегата, гидроаккумулятора, коллекторов панелей радиаторов и панелей приборов, установленных между указанными панелями радиаторов, соединительных трубопроводов между вышеуказанными элементами, причем часть жидкостного контура выполнена по параллельной схеме соединений жидкостных трактов коллекторов с одинаковыми проходными сечениями - номинальными эквивалентными внутренними диаметрами, имеющей две параллельные ветви жидкостных трактов с различной длиной, выполнена таким образом, что в вышеуказанной ветви жидкостного тракта с меньшей длиной - с меньшим по сравнению с другой параллельной ветвью гидравлическим сопротивлением часть участков соединительных трубопроводов заменена трубопроводами с уменьшенным внутренним диаметром, соблюдая условие:

при этом d X

где L X - суммарная длина, м, частей участков соединительных трубопроводов в параллельной ветви с меньшей длиной, выполненная с внутренним эквивалентным номинальным диаметром d X , м, меньшим внутреннего диаметра d I(II) , м, остальных жидкостных трактов в обеих ветвях;

L II - суммарная длина короткой ветви с учетом длины L X , м, что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого изобретения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемой системе терморегулирования космического аппарата.

Принципиальная схема предложенной СТР КА изображена на фиг.2 и фиг.3, где 1 - электронасосный агрегат (ЭНА); 2 - гидроаккумулятор (компенсатор объема); 3, 4 - панели радиаторов модуля служебных систем (МСС); 5, 6, 7 - приборные панели МСС; 8, 9 - панели радиаторов модуля полезной нагрузки (МПН); 10, 11, 12 - приборные панели МПН; 13, 14 - параллельные ветви, образованные коллекторами приборных панелей 5, 6, 7 и соединительными трубопроводами 17, 18; 15, 16 - параллельные ветви, образованные коллекторами приборных панелей 10, 11, 12 и соединительными трубопроводами 19, 20; А, В - точки входа и выхода из параллельных ветвей в МПН; С, Д - точки входа и выхода из параллельных ветвей в МСС; а-б, с-д, к-л, м-н - участки соединительных трубопроводов в коротких параллельных ветвях, имеющие меньшие внутренние диаметры по сравнению с внутренним диаметром остальных участков соединительных трубопроводов и коллекторов панелей и выполненные длиной, вычисляемой по формуле, установленной авторами на основе анализа физических процессов работы СТР:

при этом d X

где L X - суммарная длина, м, частей участков соединительных трубопроводов в параллельной ветви с меньшей длиной, выполненная с внутренним эквивалентным номинальным диаметром d X , м, меньшим внутреннего диаметра d I(II) м, остальных жидкостных трактов в обеих ветвях (следует отметить, что с точки зрения обеспечения максимально возможной экономии массы жидкостного контура и простоты его конструкции, оптимальное количество частей с d x - одно);

L I - суммарная длина длинной ветви, м;

L II - суммарная длина короткой ветви с учетом длины L X , м.

В результате такого выполнения участков соединительных трубопроводов из-за отсутствия в них тупиковых зон при промывке имеющиеся механические частицы полностью вымываются из жидкостных трактов СТР в наземное устройство и при эксплуатации на орбите заклинивание гидронасоса ЭНА исключено, т.е. обеспечивается надежная работа СТР. Выполнение части участков соединительных трубопроводов (около 7 м) с уменьшенным диаметром (d x =9 мм вместо d I (II) =12 мм) обеспечивает снижение массы соединительных трубопроводов для разрабатываемой СТР (с учетом уменьшенной массы теплоносителя в них) на 0,5 кг.

Таким образом, как следует из вышеизложенного, в результате выполнения СТР согласно предложенному техническому решению снижается относительная масса СТР и повышается надежность ее работы на орбите, т.е. тем самым достигаются цели изобретения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Система терморегулирования космического аппарата, содержащая замкнутый циркуляционный контур с теплоносителем, включающий в себя жидкостные тракты электронасосного агрегата, гидроаккумулятора, коллекторов панелей радиаторов и панелей приборов, установленных между указанными панелями радиаторов, соединительных трубопроводов между вышеуказанными элементами, причем часть жидкостного контура выполнена по параллельной схеме соединений жидкостных трактов, коллекторов с одинаковыми проходными сечениями - номинальными эквивалентными внутренними диаметрами, имеющей две параллельные ветви жидкостных трактов с различной длиной, отличающаяся тем, что в вышеуказанной ветви жидкостного тракта с меньшей длиной - с меньшим по сравнению с другой параллельной ветвью гидравлическим сопротивлением - часть участков соединительных трубопроводов выполнена с уменьшенным внутренним диаметром, при соблюдении условия:

d X < d I(II) , L II < L I ,

где L X - суммарная длина (м) частей участков соединительных трубопроводов в параллельной ветви с меньшей длиной, выполненной с внутренним эквивалентным номинальным диаметром d X (м), меньшим внутреннего диаметра d I(II) (м) остальных жидкостных трактов в обеих ветвях;

L I - суммарная длина (м) длинной ветви;

L II - суммарная длина (м) короткой ветви с учетом длины L X .

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. В жидкостном контуре СТР установлен двухступенчатый электронасосный агрегат (ЭНА) с последовательно расположенными рабочими колесами, вращающимися с частотой 6000 об/мин. В контуре используется теплоноситель ЛЗ-ТК-2 (вместо аммиака). На выходе ЭНА предусмотрена дроссельная шайба, гидравлическое сопротивление которой обеспечивает минимальный требуемый расход теплоносителя. Без шайбы гидравлическое сопротивление контура отвечает максимальной холодпроизводительности СТР. ЭНА работоспособен при повышенном (более 27 В) напряжении питания. Технический результат изобретения состоит в повышении технологичности (унификации) и надежности длительной эксплуатации любых КА с потребной холодопроизводительностью от 5 до 13-18 кВт. 2 н.п. ф-лы, 1 ил.

Настоящее изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников, СТР которых содержит жидкостный контур (или два дублированных контура) с жидким теплоносителем, циркуляцию которого обеспечивает электронасосный агрегат (ЭНА).

Известно, что СТР КА является главнейшей системой КА, т.к. все приборы, устройства его работоспособны только тогда, когда СТР надежно выполняет свои функции: поддерживает в условиях эксплуатации на орбите требуемые рабочие температуры для всех составляющих КА в течение всего заданного срока эксплуатации (как правило, более 10-15 лет).

Анализ опыта эксплуатации различных спутников с различной холодопроизводительностью СТР (до 3500-4000 Вт) показывает, что в первую очередь надежная работа СТР определяется высоконадежной работой ЭНА, при этом ЭНА должен иметь оптимальные габариты, массу и энергопотребление.

Известна СТР КА "SESAT", патент Российской Федерации №2158703 , безотказно функционирующего на орбите в течение более 14 лет (и продолжающего нормально функционировать).

СТР указанного КА (холодопроизводительностью ≈3500 Вт) включает в себя ЭНА, содержащий два центробежных насоса (один - основной и работает, а второй - резервный и находится в «ненагруженном» резерве) с одноступенчатым рабочим колесом с номинальной частотой оборотов 6000 об/мин при рабочем напряжении питания 27 В, обеспечивающим при температуре теплоносителя не более 35°C расход жидкого теплоносителя ЛЗ-ТК-2 120-150 см 3 /с (к СТР со стороны КА предъявляются следующие основные требования: с точки зрения обеспечения теплового режима элементов КА расход теплоносителя в жидкостном контуре должен быть не менее 90 см 3 /с, а с точки зрения минимально возможного кинетического момента расход теплоносителя должен быть не более 150 см 3 /с с напором (перепадом давлений теплоносителя между выходом и входом ЭНА), равным ≈0,4 кгс/см 2 , и с энергопотреблением ≈35 Вт, массой не более 4 кг).

Следует отметить, что на надежность ЭНА в первую очередь влияет работоспособность опор электродвигателя, т.к. их невозможно резервировать и они являются точками единичного отказа и для обеспечения надежной работы ЭНА работоспособность опор должна быть гарантирована высоконадежно, т.е. ЭНА должен быть квалифицирован.

Таким образом, вышеуказанная СТР и ее ЭНА квалифицирована для КА с холодопроизводительностью ≈3500 Вт.

В настоящее время создаются различные КА с существенно повышенной холодопроизводительностью, например от 5000 до 13000-18000 Вт, вышеуказанный ЭНА не может быть применен во вновь разрабатываемых мощных КА, т.к. требуемые номинальные напоры должны быть в диапазоне 1,25-1,85 кгс/см 2 .

Анализ показывает, что в случае перехода СТР, использующего в качестве теплоносителя аммиак, ЭНА получается с низкой надежностью, например на МКС аммиачные насосы неоднократно выходили из строя (см. интернет: Яндекс: отказы аммиачного насоса на международной космической станции: десять начальных файлов страницы 1 ).

Кроме того, для создания СТР с холодопроизводительностью 13000-18000 Вт для снижения массы СТР и КА в целом ЭНА должны быть работоспособны при температуре теплоносителя до 50-60°С (при такой температуре площадь излучательных радиаторов будет минимальной) и давление в жидкостном тракте СТР с аммиаком в 6 раз больше, чем при использовании в СТР теплоносителя ЛЗ-ТК-2 (и соответствующем использовании компенсатора объема согласно патенту РФ №2329920 ), т.е. утечки теплоносителя - аммиака будут в 6 раз больше, чем при использовании ЛЗ-ТК-2.

Проведенный анализ также показал, что для вновь разрабатываемых КА с холодопроизводительностью 13000-18000 Вт:

Напоры насосов должны быть увеличены в 3-5 раза и, следовательно, габаритные размеры ЭНА, выполненного по известному техническому решению , возрастут по сравнению с габаритным размером известного ЭНА в 2-3 раза, т.е. на КА потребуется больший рабочий объем для размещения ЭНА, что потребует в конечном счете увеличения габаритов и массы КА;

В случае разработки ЭНА по известному техническому решению потребуется шина питания с напряжением постоянного тока 27 В (в то же время большинство приборов во вновь разрабатываемых КА будут использовать шину питания с напряжением более 100 В);

Т.к. холодопроизводительности СТР разрабатываемых КА существенно отличаются, то гидравлические сопротивления жидкостных трактов также существенно отличаются, и, следовательно, требуемые напоры ЭНА также сильно отличаются, что обуславливает в общем случае разработку различных ЭНА с различными напорами.

Таким образом, существенными недостатками известной СТР применительно к вновь разрабатываемым КА с повышенной холодопроизводительностью являются:

Увеличение габаритов ЭНА СТР, приводящее к увеличению габаритов и массы СТР и КА в целом для сохранения высокой достигнутой надежности в течение длительного срока эксплуатации на орбите;

Потребность разработать несколько ЭНА с различными напорами;

Повышенная масса электродвигателя ЭНА при использовании шины питания 27 В, а также за счет увеличенной массы кабелей по сравнению с напряжением питания более 100 В; кроме того, требования наличия шины питания 27 В усложняет КА.

Теплофизический численный анализ вновь разрабатываемой СТР с учетом опытных данных, проведенный авторами, показал, что для устранения вышеуказанных существенных недостатков вновь разрабатываемая СТР с холодопроизводительностью 13000-18000 Вт должна быть выполнена с учетом следующего комплекса требований:

1. В жидкостном контуре СТР должен быть применен ЭНА, выполненный с двухступенчатым рабочим колесом (например, согласно авторскому свидетельству СССР №1523731 ), снижающим габариты ЭНА и прокачивающий через себя теплоноситель ЛЗ-ТК-2 с квалифицированной в условиях работы на орбите частотой вращения колеса, равной 6000 об/мин (для обеспечения требуемого ресурса по частоте вращения осевое усилие сведено к минимуму, в т.ч. при различных напорах ЭНА, для чего выполняют разгрузочные отверстия (см. второй абзац сверху на странице 97 книги М.В. Краев, В.А. Лукин, Б.В. Овсянников. Малорасходные насосы авиационных и космических систем. - М.: Машиностроение, 1985 ), что обеспечивает надежную работу ЭНА и СТР в целом в течение требуемого срока эксплуатации на орбите.

Причем для применения ЭНА в составе различных КА в диапазоне холодопроизводительности от 5000 до 13000-18000 Вт на выходе из ЭНА необходимо установить дроссельную шайбу с гидравлическим сопротивлением при минимально требуемом расходе теплоносителя в жидкостном контуре, равным

,

где ΔР др.ш. - гидравлическое сопротивление дроссельной шайбы на выходе из ЭНА, кгс/см 2 ;

ΔР СТР.макс - гидравлическое сопротивление жидкостного тракта СТР с максимальной холодопроизводительностью Q СТР.макс (Вт), равное напору ЭНА без установленной на выходе дроссельной шайбы, кгс/см 2 ;

К=0,95-1 - расчетный коэффициент на основе опытных данных.

2. Для упрощения КА и снижения массы электродвигателя ЭНА, а также за счет уменьшения массы кабеля, соединяющего его с источником питания, ЭНА необходимо выполнить работоспособным при повышенном напряжении питания более 27 В, предусмотренном на борту КА.

3. Для обеспечения высоконадежной герметичности жидкостного тракта фланец корпуса ЭНА, выполненный, например, из алюминиевого сплава, соединен сваркой через биметаллический переходник с фланцем электродвигателя, выполненным, например, из титанового сплава.

Таким образом, поставленная авторами цель - устранение вышеуказанных существенных недостатков известного технического решения - достигается тем, что СТР КА, включающая жидкостный контур с циркулирующим теплоносителем, имеющий в своем составе элементы: центробежный электронасосный агрегат, гидроаккумулятор, коллекторы панелей, на которых установлены приборы, и радиаторы, которые сообщены между собой участками соединительных трубопроводов, выполнена таким образом, что:

В жидкостном контуре установлен двухступенчатый электронасосный агрегат, прокачивающий через себя теплоноситель ЛЗ-ТК-2 в результате обеспечения вращения двух рядом последовательно расположенных рабочих колес с номинальной частотой вращения 6000 об/мин, причем на выходе из электронасосного агрегата установлена дроссельная шайба с гидравлическим сопротивлением при минимально требуемом расходе теплоносителя в жидкостном контуре, определяемым согласно соотношению:

где ΔР др.ш - гидравлическое сопротивление дроссельной шайбы на выходе из ЭНА, кгс/см 2 ;

ΔР СТР.макс - гидравлическое сопротивление жидкостного тракта СТР с максимальной холодопроизводительностью Q CTР.макс (Вт), равное напору ЭНА без установленной на выходе дроссельной шайбы, кгс/см 2 ;

Q СТР.треб - холодопроизводительность для конкретного КА, Вт;

К=0,95-1 - расчетный коэффициент на основе опытных данных;

Электронасосный агрегат выполнен работоспособным при повышенном (более 27 В) напряжении питания, например 100 В, предусмотренном на борту космического аппарата;

Фланец корпуса электронасосного агрегата, выполненный, например, из алюминиевого сплава, соединен сваркой через биметаллический переходник с фланцем электродвигателя, выполненным, например, из титанового сплава, что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами, известной патентной и научно-технической литературы предложенное сочетание существенных отличительных признаков заявляемого изобретения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемой системе терморегулирования космического аппарата.

Принципиальная схема предложенной СТР КА изображена на фиг. 1, которая включает в себя жидкостный контур 1 с циркулирующим теплоносителем ЛЗ-ТК-2, имеющий в своем составе элементы: центробежный двухступенчатый электронасосный агрегат 7 с номинальной частотой вращения рядом последовательно расположенных двух рабочих колес, равной 6000 об/мин, дроссельную шайбу 7.1, определенную согласно (1), гидроаккумулятор 6, коллекторы панелей 2, 4, на которых установлены приборы, и радиаторы 3, 5, которые между собой сообщены участками соединительных трубопроводов 8.

Согласно предложенному техническому решению конкретную СТР КА с требуемой известной холодопроизводительностью создают следующим образом:

В результате проектирования КА определяют требуемую холодопроизводительность СТР, например, 10000 Вт; затем в результате компоновки КА устанавливают требуемую суммарную длину жидкостного тракта и численным методом определяют суммарное значение гидравлического сопротивления всего замкнутого жидкостного тракта, например, при расходе теплоносителя 90 см 3 /с (расход теплоносителя для разрабатываемых СТР КА с различной холодопроизводительностью должен быть в диапазоне 90-150 см 3 /с).

Указанную величину гидравлического сопротивления жидкостного тракта принимают, что напор ЭНА должен быть равен ей при расходе 90 см 3 /с. После этого изготавливают двухступенчатый ЭНА (сваркой стыков), обеспечивающий при частоте вращения рабочих колес, равный 6000 об/мин (например, при напряжении питания 100 В), расход теплоносителя, равный 90 см 3 /с с напором, равным 1,85 кгс/см 2 (без установленной дроссельной шайбы на выходе ЭНА), обеспечивающим холодопроизводительность, равную 18000 Вт.

Определяют согласно (1) требуемое гидравлическое сопротивление дроссельной шайбы и устанавливают на выходе из ЭНА, после чего снимают его расходно-напорную характеристику. Далее осуществляют монтаж ЭНА и других элементов СТР на КА, проверяют герметичность жидкостного тракта и заправляют предварительно отвакуумированный жидкостный тракт деаэрированным теплоносителем ЛЗ-ТК-2. Проводят, в частности, наземные электрические и термовакуумные испытания и убеждаются, что СТР обеспечивает требуемые расход теплоносителя в жидкостном тракте, напор ЭНА, холодопроизводительность СТР и заданные рабочие температуры жидкостного тракта, приборов и устройств КА. После этого КА запускают на орбиту и периодически контролируют нормальное функционирование СТР КА и КА в целом.

Таким образом, как следует из вышеизложенного, в результате изготовления СТР согласно предложенному авторами техническому решению в условиях эксплуатации КА на орбите обеспечивается высокая надежность нормального функционирования в течение требуемого длительного срока эксплуатации любых КА из диапазона холодопроизводительностью от 5000 Вт до 13000-18000 Вт при одновременном обеспечении оптимальных масс их СТР, а также минимально возможного цикла изготовления различных КА с квалифицированной высоконадежной СТР, т.к. в составе СТР при этом применяется практически один и тот же ЭНА (отличие конструкции только в величине гидравлических сопротивлений дроссельных шайб на выходе из ЭНА).

1. Система терморегулирования космического аппарата, включающая жидкостный контур с циркулирующим теплоносителем, имеющий в своем составе элементы: центробежный электронасосный агрегат, гидроаккумулятор, коллекторы панелей, на которых установлены приборы, и радиаторы, которые сообщены между собой участками соединительных трубопроводов, отличающаяся тем, что в жидкостном контуре установлен двухступенчатый электронасосный агрегат (ЭНА), прокачивающий через себя теплоноситель ЛЗ-ТК-2 в результате вращения двух последовательно рядом расположенных рабочих колес с номинальной частотой вращения 6000 оборотов в минуту, причем на выходе из ЭНА установлена дроссельная шайба с гидравлическим сопротивлением, определяемым при минимально требуемом расходе теплоносителя в жидкостном контуре согласно соотношению:

,
где ΔР др.ш - гидравлическое сопротивление дроссельной шайбы на выходе из ЭНА, кгс/см 2 ;
ΔР СТР.макс - гидравлическое сопротивление жидкостного тракта системы терморегулирования с максимальной холодопроизводительностью Q CTP.макс (Вт), равное напору ЭНА без установленной на его выходе дроссельной шайбы, кгс/см 2 ;
Q СТР.треб - холодопроизводительность для конкретного космического аппарата, Вт;
К = 0,95-1 - расчетный коэффициент на основе опытных данных.

2. Система терморегулирования по п. 1, отличающаяся тем, что ЭНА выполнен работоспособным при повышенном, например, более 27 В, напряжении питания, предусмотренном на борту космического аппарата.

3. Система терморегулирования по п. 1, отличающаяся тем, что фланец корпуса ЭНА, выполненный, например, из алюминиевого сплава, соединен сваркой через биметаллический переходник с фланцем электродвигателя, выполненным, например, из титанового сплава.

Похожие патенты:

Группа изобретений относится к средствам предстартовой подготовки космического аппарата (КА). Устройство содержит противоточный рекуперативный жидкостно-жидкостный теплообменный агрегат, включенный в циркуляционный тракт теплоносителя системы терморегулирования КА.

Изобретение относится к ракетно-космической технике и может быть использовано для обеспечения теплового режима полезной нагрузки (ПН). Устройство обеспечения теплового режима полезной нагрузки в сборочно-защитном блоке содержит теплоизолирующую перегородку, теплоизолирующие покрытия, отверстия подачи и истечения термостатирующего газового компонента в головном обтекателе (ГО) и переходном отсеке (ПхО).

Изобретение относится к управлению работой систем обеспечения теплового режима (СОТР) автоматических космических аппаратов (КА) на околоземных орбитах. Способ состоит в том, что при штатном теплонагружении КА обеспечение температур сотопанелей (СП) осуществляют пассивными средствами на уровне номинального значения допустимых температур приборов, установленных на этих СП.

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке и старте ракеты космического назначения. Устройство обеспечения теплового режима и чистоты космической головной части ракеты космического назначения с крупногабаритной полезной нагрузкой содержит на головном обтекателе и на переходном отсеке отверстия вдува термостатирующей газовой среды, отверстия истечения термостатирующей газовой среды, шарнирно установленные клапаны одностороннего действия отверстий вдува и истечения термостатирующей газовой среды, устройство вдува термостатирующей газовой среды в виде закрепленного на окантовке отверстия вдува лотка с клапанами одностороннего действия в виде уплотняющих крышек, дополнительные отверстия вдува термостатирующей газовой среды, клапаны одностороннего действия в виде заслонки с противовесом между входным отверстием с защитной сеткой и выходным отверстием, теплоизолирующее и терморегулирующие покрытия.

Изобретение предназначено для терморегулирования модулей долговременных орбитальных станций. Система терморегулирования содержит средства теплопереноса, электронагреватели со средствами управления и датчиковую аппаратуру на внутренней поверхности корпуса модуля.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов, например телекоммуникационных спутников. СТР содержит жидкостный контур теплоносителя с электронасосным агрегатом (ЭНА) и компенсатором объема (КО). Жидкостная полость КО соединена с контуром вблизи входа в ЭНА, а сильфонная газовая полость КО заправлена двухфазным рабочим телом. На подвижном днище сильфона установлен постоянный магнит, а снаружи корпуса КО равномерно установлены герконы с шагом, обеспечивающим одновременное замыкание до 2-4 рядом расположенных герконов. Герконы сообщены с системой телеметрии космического аппарата. В жидкостной полости КО предусмотрен запас теплоносителя в количестве, соответствующем половине его объема между соседними герконами. КО с герконами может быть покрыт экранно-вакуумной теплоизоляцией. Техническим результатом изобретения является обеспечение диагностики и прогнозирования наличия в жидкостном контуре требуемого количества теплоносителя при эксплуатации СТР (на орбите и при наземных испытаниях) в текущий и последующий периоды. 1 з.п. ф-лы, 2 ил.

Изобретение относится к бортовым системам электропитания (СЭП), преимущественно низкоорбитальных космических аппаратов (КА) с трехосной ориентацией. СЭП содержит панели солнечной батареи с устройством изменения их ориентации, размещенные с внешней стороны боковых сотопанелей приборного контейнера. В боковые, верхнюю и нижнюю сотопанели контейнера встроены тепловые трубы. СЭП также содержит четыре одинаковых подсистемы электропитания: две рабочих и две резервных. Каждая подсистема установлена на одной из внутренних поверхностей боковых сотопанелей и включает в себя аккумуляторную батарею с зарядным и разрядным устройством. Единый модуль двух таких устройств соседних подсистем установлен на одну боковую сотопанель. Часть внешней поверхности боковых сотопанелей имеет терморегулирующее покрытие с и, а на остальную часть нанесена теплоизоляция. Все сотопанели соединены коллекторными тепловыми трубами с электронагревателями. Технический результат изобретения заключается в оптимизации компоновки СЭП на КА, снижении массы и улучшении термостабилизации основных узлов СЭП. 3 ил.

Изобретение касается обеспечения теплового режима бортового научного и служебного оборудования космических аппаратов: искусственных спутников, межпланетных станций и др. Система содержит не менее двух термостатируемых панелей (ТСП) с встроенными тепловыми трубами и не менее двух радиаторов. Каждая ТСП подключена к одному из радиаторов посредством регулируемых контурных тепловых труб (КТТ). Испарители этих КТТ установлены на ТСП, а конденсаторы встроены в радиаторы. Введен резервный радиатор, соединенный с ТСП дополнительными регулируемыми КТТ. Испарители и конденсаторы этих КТТ аналогично связаны с ТСП и резервным радиатором. В паропроводах дополнительных КТТ установлены управляемые клапаны для перекрытия либо открытия этих паропроводов. Техническим результатом изобретения является повышение надежности системы терморегулирования, снижение ее массы и габаритов. 3 з.п. ф-лы, 5 ил.

Изобретение относится к системам терморегулирования космических аппаратов (КА). Способ заключается в том, что измеряют температуру в зонах радиационных панелей (РП) датчиками температур, поддерживают температуру в зонах РП в пределах допустимого диапазона путем изменения температур посредством терморегуляторов, разбивают период оборота КА вокруг Земли на фиксированные интервалы времени, которые определяются ориентацией КА относительно Солнца и планет. Определяют по паспортным данным на установленные в зонах служебные системы допустимый диапазон температур, максимально возможные рассогласования температур в местах установки четырех датчиков температур в каждой зоне. Разбивают каждый из фиксированных интервалов времени периода оборота КА вокруг Земли в каждой зоне на локальные интервалы времени, в которых соблюдаются повторяющиеся на витках орбиты одинаковые температурные условия. Во время полета КА измеряют и передают в наземный комплекс управления значения температур каждой зоны и ток, потребляемый терморегуляторами. Техническим результатом изобретения является повышение эффективности и живучести системы терморегулирования КА. 6 ил.

Изобретение относится к системам терморегулирования космических аппаратов (КА). Способ заключается в том, что измеряют температуру в зонах радиационных панелей (РП) датчиками температур, изменяют температуру каждой зоны посредством терморегуляторов, разбивают период оборота КА вокруг Земли на фиксированные интервалы времени, которые определяют ориентацией КА относительно Солнца и планет. Разбивают каждый из фиксированных интервалов времени в каждой из зон на локальные интервалы времени, на которых соблюдаются повторяющиеся на витках орбиты одинаковые температурные условия. Определяют по паспортным данным на установленные в зонах служебные системы соответствующие допустимые диапазоны температур, при которых обеспечивается их работоспособность, а также величины разбросов характеристик датчиков температур в каждой зоне. Для каждого локального интервала в каждой i-той зоне определяют количество включений и суммарную длительность включений нагрева, вычисляют период включения нагрева, а также длительность включения нагрева на каждом периоде. Техническим результатом изобретения является повышение надежности и живучести системы терморегулирования КА. 5 ил.

Изобретение относится к космической технике и может использоваться в системах терморегулирования приборных отсеков. Система термостабилизации приборного отсека космического аппарата включает радиатор-излучатель и тепловые трубы. Радиатор-излучатель выполнен в виде цилиндрического экрана с круговыми тепловыми трубами на поверхности, размещенными вдоль образующей экрана. Система, обеспечивающая терморегуляцию тепловыделяющих элементов, включает низкотемпературные тепловые трубы, размещенные с возможностью непосредственного теплового контакта с этими элементами и снабженные интерфейсом для стыковки с низкотемпературной тепловой трубой космического аппарата для отвода тепла в космическое пространство. Система контроля и регулировки температуры снабжена электронагревателями, связанными через блок управления с датчиками температуры, расположенными с электронагревателями в теплоизолирующих зазорах. Техническим результатом изобретения является повышение точности и надежности терморегулирования. 2 ил.

Изобретение относится к космической технике и может быть использовано в конструкциях холодильников-излучателей космических аппаратов (КА) и энергетических установок. Излучатель устройства сброса низкопотенциальной энергии космического аппарата содержит металлическую трубку с внешним защитным теплопроводящим слоем. Внешний защитный теплопроводящий слой выполнен по крайней мере из двух одинаковых расположенных вокруг трубки продольных трубчатых элементов. Стенки соседних трубчатых элементов соприкасаются и выполнены из углерод-углеродного композиционного материала на основе высокотеплопроводного углеродного волокна. Торцы трубчатых элементов закрыты. Трубчатые элементы заполнены легким заполнителем. Техническим результатом изобретения является повышение теплоотводящей способности и защищенности излучателя. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области космической техники, а именно к устройствам отвода тепла в термодинамическом цикле космической энергетической установки. Устройство для улавливания диспергированной пелены капельного холодильника-излучателя (КХИ) содержит узел подачи и узел нагнетания рабочего тела. Узел подачи включает ведущий и ведомый шкивы с установленной на них лентой. На возвратном участке ленты установлен электроподогреватель. Узел нагнетания установлен над ведущим шкивом и включает ротор с углублениями, вмещающими подвижные лопатки и толкатели с возвратными пружинами, кулачок, задающий требуемый закон перемещения толкателей, и шторку снятия остатков рабочего тела. Сбор остывших в результате радиационного охлаждения капель осуществляется движущейся лентой узла подачи. На ленте образуется перемещающаяся вместе с ней к узлу нагнетания жидкая пленка. Для снятия пленки с ленты используются подвижные лопатки. Термостатирование остаточного количества рабочего тела при возвратном движении ленты осуществляется электрическим подогревателем. Техническим результатом изобретения является обеспечение транспортировки охлажденного рабочего тела КХИ ко входу в насос замкнутого контура его циркуляции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике, а именно к устройствам теплообмена. Панель холодильника-излучателя содержит теплоизлучающую пластину из композиционного материала и металлические трубки для теплоносителя, размещенные между теплоизлучающей пластиной и накладками из композиционного материала. Каждая накладка соединена с пластиной и содержит участок, форма которого соответствует форме металлической трубки. В теплоизлучающей пластине выполнены цилиндрические канавки, с размещенными в них металлическими трубками для теплоносителя. Накладки и теплоизлучающая пластина выполнены из углерод-углеродного композиционного материала. Теплоизлучающая пластина имеет расположенные между трубками отверстия, содержащие натянутые углеродные волокна с теплопроводностью более 300 Вт/м⋅К. Изобретение может быть использовано в конструкциях спутников и энергетических установок. Техническим результатом изобретения является снижение массы панели холодильника-излучателя при увеличении эффективного сброса тепла. 5 з.п. ф-лы, 3 ил.

Изобретение относится к терморегулируемому бортовому оборудованию космического аппарата (КА). Отсек содержит шестиугольную платформу (многослойную панель), на которой с двух сторон размещены тепловыделяющие элементы блоков аппаратуры. Несущая конструкция отсека выполнена на основе тепловых труб (ТТ). Её верхний торец повторяет контур платформы. Элементы аппаратуры, не требующие охлаждения, установлены на силовой ферме, закрепленной на нижнем торце несущей конструкции в виде правильного треугольника. Система терморегулирования объединяет две системы: одна обслуживает тепловыделяющие элементы, не требующие, а другая – требующие низкотемпературного охлаждения. Первая имеет цилиндрический радиатор-излучатель и соединенные с ним ТТ. Другая включает низкотемпературные ТТ, стыкуемые с низкотемпературной ТТ для отвода тепла в космическое пространство. Все ТТ имеют возможность теплового контакта с указанными тепловыделяющими элементами. Техническим результатом изобретения является оптимизация компоновки КА, повышение прочности и жесткости конструкции при наземных операциях и выведении, а также повышение термоустойчивости при работе на орбите. 3 ил.

Изобретение относится к системам терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников. В жидкостном контуре СТР установлен двухступенчатый электронасосный агрегат с последовательно расположенными рабочими колесами, вращающимися с частотой 6000 обмин. В контуре используется теплоноситель ЛЗ-ТК-2. На выходе ЭНА предусмотрена дроссельная шайба, гидравлическое сопротивление которой обеспечивает минимальный требуемый расход теплоносителя. Без шайбы гидравлическое сопротивление контура отвечает максимальной холодпроизводительности СТР. ЭНА работоспособен при повышенном напряжении питания. Технический результат изобретения состоит в повышении технологичности и надежности длительной эксплуатации любых КА с потребной холодопроизводительностью от 5 до 13-18 кВт. 2 н.п. ф-лы, 1 ил.

В России испытана система охлаждения ядерной энергодвигательной установки (ЯЭДУ) - одного из ключевых элементов космического аппарата будущего, на котором можно будет совершать межпланетные полёты. В частности, были протестированы экспериментальные образцы генератора капель, элементов заборного устройства и модели холодильника-излучателя. Появление эффективной системы охлаждения снимает практически все препятствия для создания ЯЭДУ. Мощность первой установки составит 1 МВт, но в будущем увеличится в десять раз. Как полагают эксперты, достижение отечественных учёных станет существенным вкладом в развитие науки и экономики РФ. О перспективах технологии - в материале RT.

  • Двигатель для космических аппаратов
  • Gettyimages.ru
  • Craig F. Walker

Российские учёные успешно испытали мегаваттного класса. Об этом сообщается в акте приёмки, размещённом на сайте госзакупок. В документе подчёркивается, что «работы выполнены в полном объёме, результаты соответствуют требованиям технического задания».

«Были выявлены закономерности функционирования элементов и узлов перспективных систем отвода тепла ЯЭДУ мегаваттного класса в наземных условиях, максимально приближенных к условиям космического пространства», — говорится в акте.

В документе уточняется, что специалисты изготовили и испытали экспериментальные образцы генератора капель, элементов заборного устройства (гидросборника) и модели капельного холодильника-излучателя (КХИ).

  • globallookpress.com

Разработкой КХИ занимаются ФГУП «Исследовательский центр им. Келдыша», Центр космических технологий Московского авиационного института, ОАО «РКК «Энергия» им. Королёва» и Московский энергетический институт.

ЯЭДУ — перспективный двигатель для космических аппаратов, который позволит совершать в несколько раз быстрее, чем сейчас. С его помощью Россия получит возможность , Марса, дальних планет Солнечной системы и создавать там автоматические базы.

«Принцип работы ЯЭДУ заключается в том, что компактный ядерный реактор вырабатывает тепловую энергию, которая с помощью турбины преобразуется в электрическую. Она нужна для того, чтобы питать энергией ионные электрореактивные двигатели и оборудование», — пояснил в беседе с RT младший научный сотрудник НИИ ядерной физики им. Скобельцына МГУ Василий Петров.

Не имеет аналогов в мире

На современных двигателях низкопотенциальное (избыточное) тепло, которое может повредить бортовую аппаратуру, выводится в окружающее пространство (космос) через трубы панельных радиаторов, где циркулирует жидкость-теплоноситель. Такая система охлаждения представляет собой громоздкую конструкцию, не защищённую к тому же от попадания метеоритов.

Российские учёные изобрели принципиально новую схему отвода тепла. С помощью генератора холодильник-излучатель формирует капельные струйки горячего теплоносителя, который охлаждается на пути к гидросборнику и, собираясь в нём, направляется снова в рабочий контур. Подобная технология не предусматривает использования труб и таким образом облегчает конструкцию системы охлаждения.

«Успешное испытание системы охлаждения означает, что российским учёным удалось решить ключевую проблему на пути создания ЯЭДУ. Дело в том, что у атомной силовой установки один большой недостаток — она очень сильно нагревается. Если на Земле ядерный реактор охлаждается под напором воды, то в космосе такая возможность отсутствует», — сказал Петров.

Инициатором создания ЯЭДУ считается академик отделения физико-технических проблем энергетики РАН, бывший генеральный директор ФГУП «Исследовательский центр им. Келдыша» Анатолий Коротеев. Головной разработчик атомной энергодвигательной установки — Научно-исследовательский и конструкторский институт энерготехники им. Н.А. Доллежаля (НИКИЭТ).

Создание ЯЭДУ ведётся в рамках запущенного в 2010 году проекта транспортно-энергетического модуля (ТЭМ), над которым работают предприятия «Росатома» и «Роскосмоса». Согласно графику комиссии по модернизации при президенте РФ, опытный образец ядерного реактора мегаваттного класса должен появиться до конца 2018 года. В материалах «Росатома» подчёркивается, что данный проект не имеет аналогов в мире.

«Реализация этого проекта позволит на базе уже имеющегося задела поднять отечественную технику на принципиально новый уровень, во многом опережающий зарубежные разработки», — заявил в октябре 2009 года на заседании комиссии по модернизации глава «Роскосмоса» (в 2004—2011 годах) Анатолий Перминов.

Как сообщил ранее генеральный конструктор НИКИЭТ доктор технических наук Юрий Драгунов, в основу ЯЭДУ лёг накопленный с 1960-х годов опыт создания ядерных ракетных двигателей, термоэлектрических энергоустановок и эксплуатации всевозможной космической техники. Мощность первого образца ядерной энергодвигательной установки он оценил в 1 МВт.

  • Ядерный реактор атомной электростанции
  • РИА Новости
  • Алексей Даничев

Однако, как заявил Драгунов, в недалёком будущем Россия сможет производить 10-мегаваттные установки, «что подразумевает практически неограниченные возможности энергетики для космоса». По его словам, ЯЭДУ будет обладать более высоким коэффициентом полезного действия, так как тепловая энергия реактора не будет направляться на разогрев газовой смеси.

В процессе работы над космической атомной установкой специалисты ФГУП «НИИ НПО «Луч» (Подольск) впервые в мире разработали промышленную технологию создания монокристаллических длинномерных трубок из тугоплавких металлов (молибден, вольфрам, тантал, ниобий) и сплавов. Данное изобретение позволяет изготавливать агрегаты двигателей, способных работать при температуре 1500 °C.

«Очень востребованные разработки»

Василий Петров рассказал, что достижения при разработке ЯЭДУ и ТЭМ позволят создать управляемый с Земли необитаемый космический аппарат, который сможет быстрее и эффективнее и выполнять функции межорбитального буксира. Сегодня для аналогичных целей используется разгонный блок «Фрегат».

«Надо понимать, что «Фрегат» — это одноразовый аппарат, расходующий гигантское количество топлива. После выполнения своей задачи он сгорает. Конечно, это недешёвое удовольствие. Гораздо экономичнее иметь в космосе многоразовое транспортное средство, которое человек будет использовать по необходимости, причём на протяжении десятков лет. Это будет по-настоящему революционная разработка», — пояснил Петров.

Как полагает эксперт, ядерная энергодвигательная установка не несёт опасности для окружающей среды. Отработавший свой ресурс реактор может быть отправлен на «орбиту захоронения», куда уводятся аппараты после выхода из строя. Также Петров не исключает, что через десятки лет человечество изобретёт технологию утилизации ЯЭДУ.

«Создание компактных мощных ядерных реакторов и прогресс в системах охлаждения наверняка окажут серьёзный положительный эффект на развитие промышленности и экономики России. Это очень востребованные разработки в сфере энергетики, которые должны найти применение в самых разных сферах», — отметил Петров.

В беседе с RT военный эксперт Юрий Кнутов предположил, что ЯЭДУ и научно-технический прогресс, связанный с его изобретением, могут заинтересовать Минобороны РФ. По его мнению, технологический рывок, который совершили российские учёные, применим для совершенствования электромагнитного оружия, а также источников энергии для нужд ВКС и ВМФ.

«Ядерная энергия вполне может использоваться при разработке оружия с электромагнитным импульсом и как источник питания для различных средств разведки. Также эти наработки пригодятся для создания более эффективных и простых в эксплуатации морских силовых установок. Речь идёт о «вечном» ядерном реакторе с ресурсом на весь жизненный цикл атомной подлодки», — заявил Кнутов.

  • Подводный крейсер «Юрий Долгорукий»
  • РИА Новости

Эксперт также отметил, что в ближайшее время не стоит ожидать создания межпланетного корабля из-за невозможности на данный момент обеспечить 100%-ную защиту человека от солнечной радиации на расстоянии свыше 500 км от Земли. Кроме того, вспышки на Солнце будут пагубно влиять не только на экипаж, но и на электронику.

«Пока говорить о возможности создания корабля с ЯЭДУ преждевременно. Чтобы защитить экипаж, ему потребуется свинцовый корпус толщиной несколько метров. В итоге корабль будет громоздким и чрезвычайно дорогим. Конечно, никто в это вкладывать деньги не будет. Но прогресс не стоит на месте. С изобретением лёгкого прочного средства защиты перед Россией и человечеством откроются действительно невероятные перспективы», — резюмировал Кнутов.

Когда в космосе жарко

Режим работы спутника – сложного автономного робота – периодически меняется. Включаются и выключаются мощные электрические приборы, вращаются нагретые солнечные панели – источник переменного теплового облучения приборного отсека, иногда аппарат попадает в тень Земли. В таких сложных тепловых условиях система терморегулирования космического аппарата играет ключевую роль в обеспечении долговечности и эффективности его работы, ведь в космосе нет воздуха, благодаря которому в обычной жизни происходит теплообмен.

Для решения проблемы прецизионной термостабилизации систем космического корабля в новосибирском Институте теплофизики СО РАН были предложены гипертеплопроводящие панели, работающие на принципе переноса тепла при фазовом переходе «жидкость–пар». Они способны передавать тепло на порядки эффективнее традиционных материалов. Эти уникальные теплопроводящие устройства могут также с успехом использоваться в наземных приложениях, в частности в радиоэлектронике для повышения эффективности охлаждения процессоров в вычислительных машинах.

В 2012 г. первые образцы таких панелей в составе термостабилизированной платформы атомных часов будут тестироваться в космосе на спутнике «ГЛОНАСС-М»

Прошло немногим более полувека со дня запуска первого спутника, а космические технологии уже прочно вошли в нашу жизнь. Привычными стали регулярные полеты к МКС, космический туризм, спутниковая навигация и телевидение… Надежные космические аппараты нужны, как хорошие автомобили. Притом что на орбите нет станций технического обслуживания, обеспечение долговечности и эффективности работы всех элементов космического аппарата – главная задача разработчиков. Ключевую роль при этом играет система терморегулирования, ведь приборы, как и люди, нуждаются в «комфортной» температуре.

Одно из главных условий, гарантирующих надежность и долговечность сложного автономного робота, каким является спутник, – поддержание стабильного температурного режима работы всей бортовой аппаратуры. Эта задача далеко не проста, поскольку движущийся по орбите спутник находится в сложных и постоянно меняющихся тепловых условиях.

Режим работы самого аппарата периодически меняется: включаются и выключаются мощные электрические приборы, спутник заходит в тень Земли, вращаются нагретые солнечные панели, являющиеся источником переменного теплового облучения приборного отсека. В таких условиях задача обеспечения теплового режима работы каждого элемента космического аппарата возлагается на специальную систему терморегулирования. При этом сброс излишек тепла с аппарата осуществляется единственным способом – излучением в окружающее космическое пространство.

Обычная система терморегулирования космического аппарата включает в себя тепловые газожидкостные контуры, излучательные радиаторы, нагреватели, терморегулирующие покрытия и тепловые изоляторы. При этом важна правильная компоновка тепловыделяющих элементов, основанная на точном расчете тепловых режимов работы. После создания спутника система тщательно тестируется на земле, ведь в космосе уже ничего нельзя будет исправить.

Негерметичный – лучше!

В 1990-х гг. на одном из ведущих предприятий космической отрасли ОАО «Информационные спутниковые системы» им. академика М. Ф. Решетнёва (г. Железногорск, Красноярский край) приступили к разработке космических аппаратов с приборным отсеком негерметичного исполнения, аналоги которых уже существовали за рубежом. Такие спутники являются более легкими, надежными и долговечными, однако отсутствие воздушной среды в приборном отсеке, обычно использовавшейся для отвода тепла, потребовало разработки новых принципов теплового проектирования приборов и способов сброса тепла на излучательные радиаторы.

С работы над этим проектом и началось сотрудничество ОАО «ИСС» с Институтом вычислительного моделирования СО РАН (г. Красноярск). Вообще взаимодействие академической и отраслевой науки всегда было достаточно сложным процессом как в силу различных подходов к решению задач, так и в силу различной ответственности за результат. Однако ситуация на этот раз была благоприятной: разработка принципиально новой конструкции космического аппарата требовала новых идей и новых технических решений. Нужны были энтузиасты и с той и с другой стороны.

Одной из первых «космических» разработок ученых стала вычислительная модель теплового режима космического аппарата негерметичного исполнения, которая базировалась на накопленном в институте большом опыте решения трехмерных нестационарных задач тепломассообмена.

Даже на современной вычислительной технике полное решение подобных задач требует слишком много времени, поэтому исследователями была предложена так называемая иерархическая модель. Ее основная идея заключалась в том, что нет необходимости детально просчитывать температурный режим каждого мелкого тепловыделяющего элемента, пока не оценен допустимый тепловой баланс целых узлов.

В результате был создан пакет прикладных программ для расчета теплового режима космического аппарата негерметичного исполнения, движущегося по произвольной орбите, с учетом эффективной теплоемкости конструкции и приборов, теплового сопротивления посадочных мест и переменной теплопроводности радиационных панелей.

Эти разработки ИВМ стали составной частью проекта, который был реализован в рамках Федеральной космической программы и завершился созданием «Интегрированной многоуровневой системы Градиент-2 проектирования КА блочно-модульного исполнения».

Космос в масштабе стенда

Долговечность космического аппарата зависит от каждого элемента бортовой аппаратуры, поэтому проверка ее надежности – один из важнейших этапов создания спутника.

Сейчас эта задача стала особенно актуальной. Еще в 2000-х гг. срок службы космических аппаратов связи и навигации не превышал пяти лет, сейчас же он увеличился до 15 и более лет. Для создания таких аппаратов требуются точные современные методы контроля качества, гарантирующие их надежную работу на протяжении всего срока службы. Конечно, имеющиеся математические модели теплового режима можно использовать для расчета тепловых режимов отдельных электронных блоков и оптимизации их расположения, однако в расчетах невозможно учесть все технологические разбросы параметров теплового обмена в условиях реальной работы аппаратуры.

Поэтому в ИВМ была разработана методика тепловакуумных испытаний с помощью тепловизионной измерительной системы. Методика основана на использовании тепловакуумного стенда – камеры, обеспечивающей имитацию космических условий и оснащенной специальным измерительным оборудованием и программным обеспечением. В камеру помещаются модули с бортовой аппаратурой, а затем в условиях, приближенных к реальным, в автоматизированном режиме осуществляется наблюдение за тепловым полем всех элементов. Анализ температурных данных позволяет выявить теплонапряженные узлы и заменить их или улучшить качество монтажа.

Такой тепловакуумный стенд для испытания элементов бортовой аппаратуры был изготовлен и введен в строй в ОАО «ИСС» в 2005 г. С того времени на этом стенде проходят проверку все радиоэлектронные приборы, предназначенные для использования на борту космических аппаратов.

Термостабильное… время

На каждом космическом аппарате имеется высокоточная бортовая шкала времени, для которой требуются высокостабильные генераторы частоты. Такие бортовые часы особенно важны для навигационных спутников, так как определение координат на поверхности Земли происходит по измерению расстояния от точки до самих космических аппаратов с использованием специальных сигналов, содержащих оцифрованную шкалу времени и сетку стабильных импульсов. И чтобы определить расстояние с точностью до метра, бортовая шкала времени должна отличаться от наземной не более чем на 3 нс!

На борту современных навигационных космиче­ских аппаратов используются атомные часы на основе цезиевых или рубидиевых стандартов частоты, требующие поддержания рабочей температуры с точностью до долей градуса. В конечном счете тщательность соблюдения температурного режима работы таких часов определяет точность полученных координат. Для поддержания постоянной температуры используется специальная высокоточная система тепловой стабилизации – термостабилизированная платформа, включающая температурные датчики, тепловые трубы, электрические нагреватели и систему управления, функ¬ционирующую по специальному алгоритму.

Создание прецизионных систем термостабилизации для негерметичных приборных отсеков спутников было начато в 2001 г. с разработки термостабилизированных панелей с фазовым переходом, обеспечивающих пассивное (без затрат электрической энергии) регулирование температуры посадочного места с точностью ±0,1 °C (патент № 2240606, 2004). Такая панель особенно хорошо подходит для малогабаритных приборов, иначе ее вес будет слишком велик.

Поскольку реальные атомные часы достаточно велики, в их системе терморегулирования были использованы гипертеплопроводящие панели, основанные на переносе тепла при фазовом переходе жидкость–пар. Система терморегулирования включает также датчики температуры и электрические нагреватели. Точность стабилизации зависит от многих факторов, что потребовало разработки математической модели нестационарного теплообмена, а также алгоритма управления электрическими нагревателями.

В 2008 г. полномасштабный образец термостабилизированной платформы с гипертеплопроводящим основанием для атомных часов спутников «ГЛОНАСС» прошел испытания в тепловакуумной камере института: в рабочем режиме точность стабилизации температуры составила ±0,04 °С.

В сто раз лучше алюминия

Задача прецизионной термостабилизации оказалась многогранной. Ее решение потребовало, в частности, создания устройств для пространственного выравнивания температур в месте установки атомных часов. В результате появилось и развилось новое направление по созданию гипертеплопроводящих панелей. Его актуальность связана с тем, что в условиях постоянно растущих требований к мощности и компакт­ности электронной аппаратуры космического аппарата задача эффективного отвода тепла стала настоящей проблемой, требующей кардинально новых решений.

Одним из таких решений является использование гипертеплопроводящих плоских структур, способных передавать тепло на порядки эффективнее традиционных материалов. Совместными усилиями ИВМ СО РАН, Уральского электрохимического комбината (г. Новоуральск) и ОАО «ИСС» были разработаны гипертеплопроводящие панели, эффективная теплопроводность которых в 100 раз превышает теплопроводность алюминия!

Гипертеплопроводящие панели являются не новым материалом, а настоящим компактным тепловым устройством со сложной внутренней структурой. В основу их создания легла концепция так называмой тепловой трубы .

Классическая тепловая труба представляет собой запаянную с обеих сторон герметичную трубу, на внутренней стенке которой располагается фитиль, содержащий жидкий теплоноситель. При нагреве одного из концов такой трубы жидкий теплоноситель начинает испаряться из фитиля и в виде пара перемещаться к противоположному концу, где конденсируется и снова впитывается в фитиль. За счет капиллярных сил фитиля жидкость постоянно возвращается к месту подвода тепла. Замечательным свойством такого устройства является то, что для передачи большого количества тепла требуется очень маленький перепад температуры, при этом не нужно никаких насосов и вообще движущихся частей.

Гипертеплопроводящая панель является двухмерной тепловой трубой. Внутри тонкой плоской панели находится заполненный жидким теплоносителем пористый материал. Внутренняя структура каналов в пористом материале такова, что теплоноситель способен перемещаться в любом направлении вдоль всей плоскости панели, обеспечивая перенос тепла.

Вычислительное моделирование показало чрезвычайно высокую эффективность передачи тепла таким устройством. Самой сложной проблемой оказалась разработка самой технологии изготовления, однако эти трудности удалось преодолеть. Экспериментальные исследования образцов гипертеплопроводящих панелей подтвердили, что они обладают всеми ожидаемыми характеристиками.

Точность во всем

Высокоточные системы терморегулирования требуют и соответствующих высокоточных систем измерения температуры. Однако ни один из видов современных температурных датчиков не способен сохранять свои характеристики в течение долгих лет работы спутника на орбите. Со временем, медленно, но неизбежно, их характеристики меняются, а жесткие космические условия только ускоряют этот процесс.

В результате работа систем термостабилизации ухудшается, что снижает надежность спутника в целом. Одним из решений этой проблемы является создание специального устройства – бортового стандарта температуры, пригодного для калибровки температурных датчиков прямо в космическом полете.

Принцип работы этого устройства основан на том факте, что температура плавления и отвердевания некоторых веществ с высокой точностью постоянна. Такие вещества называются эвтектическими сплавами . Например, температура плавления сплава галлия и индия (Ga–In) равна 15,3 °С. И задача измерения температуры сводится в результате к сравнению температуры с эталонной температурой плавления эвтектического сплава.

Подобный бортовой стандарт температуры был также разработан совместными усилиями специалистов института и ОАО «ИСС».

Тепловое проектирование космических аппаратов представляет собой интересную и важную область, требующую продолжения сложного комплекса фундаментальных, вычислительных и экспериментальных работ.

В частности, в 2012 г. запланирован космический экспе¬римент на аппарате «ГЛОНАСС-М» для проверки системы прецизионной термостабилизации атомных часов. Это первые образцы гипертеплопроводящих пластин, которые будут тестироваться непосредственно в реальных условиях.

Более того, хотя гипертеплопроводящие панели создавались для применения в космических аппаратах, эти уникальные устройства могут быть с успехом использованы и в наземных приложениях, в частности в радиоэлектронике для повышения эффективности охлаждения процессоров в вычислительных машинах или отвода тепла от мощных излучающих светодиодов и светодиодных матриц.

Литература

Деревянко В. А., Васильев Е. Н., Нестеров Д. А. и др. Вычислительное моделирование процессов теплообмена в системах терморегулирования космических аппаратов // Вычислительные технологии. 2009. Т.14, № 6.

Чеботарев В. Е. Проектирование космических аппаратов систем информационного обеспечения: учеб. пособие в 2 кн. Красноярск: Сиб. гос. аэрокосмич. ун-т, 2004. Кн.1. 132 с.; Кн. 2. 2005. 168 с.

Козлов Л. В., Нусинов М. Д., Акишин А. И. и др. Моделирование тепловых режимов КА и его окружающей среды. М.: Машиностроение, 1971. 382 с.