Условия процесса горения. Горение. Необходимые и достаточные условия, необходимые для обеспечения горения

Горение. Необходимые и достаточные условия, необходимые для обеспечения горения.

Горением называется сложный физико-химический процесс взаимодействия горючего вещества и окислителя, характеризующийся самоускоряющимся химическим превращением и сопровождающийся выделением большого количества тепла и света. Обычно в качестве окислителя участвует кислород, которого в воздухе 21%. Для обеспечения горения необходимо и достаточно: горючее вещество; окислитель; источник воспламенения определенной мощности, обеспечивающий реакцию между горючим веществом и окислителем. Для обеспечения горения горючее вещество и окислитель должны находится в определенных соотношениях друг с другом. Горение, характеризуемое наличием раздела фаз (например, горение твердого вещества), называется гетерогенным. Горение газообразных смесей называется гомогенным.

Горение может осуществляться в двух режимах: самовоспламенения и распространения фронта пламени. Важнейшая особенность процесса горения – самоускоряющийся характер химического превращения.

58.Пожар. Классификация пожаров в зависимости от веществ, подвергаемых горению. Пожаром называется – неконтролируемый процесс горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей. Согласно ГОСТу 12.1.004 пожар осуществляется как неконтролируемое горение вне специального очага, причиняющее материальный ущерб. Классификация пожаров в зависимости от веществ, подверженных горению и рекомендуемые средства пожаротушения при этом приведены в таблице 2.4.

А-горение твердых веществ :А1- Горение твердых, веществ, сопровождаемое тлением (например, древесина, бумага, уголь, текстиль); А2-Горение твердых веществ, не сопровождаемое тлением (каучук, пластмассы); В-горение жидких веществ: В1-Горение жидких веществ, нерастворимых в воде (бензин, нефтепродукты), а также сжижаемых твердых веществ (парафин); В2-Горение жидких веществ, растворимых в воде (спирты, ацетон, глицерин и др.); С-горение газообразных веществ: Бытовой газ, пропан, водород, аммиак и др.; Д-горение металлов и металлосодержащих веществ: Д1-Горение легких металлов и их сплавов (алюминий, магний и др.) кроме щелочных; Д2-Горение щелочных металлов (натрий, калий и др.); Д3-Горение металлосодержащих соединений (металлоорганические соединения, гидраты металлов); Класс пожара Е – объект тушения (электроустановки), находящиеся под напряжением. Тушение производится газовыми составами и порошками.

Условия возникновения горения

Физической основой пожара является горение. По определению «горение - физико-химическое превращение, характеризующееся выделением тепла и света». Процесс горения может возникать как в реакциях соединения так и разложения. В общем случае для возникновения горения необходимо наличие горючего вещества, окислителя и источника воспламенения.

Окислителями в горении может быть кислород, находящийся в воздухе или в составе вещества, галогены, перекись водорода, азотная и серная кислоты, перманганат калия, хромовый ангидрид и другие соединения. Кроме того некоторые вещества горят в реакциях соединении, например, меди с серой, магния с углекислым газом. Группа веществ горит при взаимодействии с водой или ее парами. Сюда относятся щелочные, щелочноземельные металлы (калий, натрий и др.), гидриды, карбиды, фосфиды указанных металлов, низкомолекулярные металлоорганические соединения (триэтилбор, триэтилаллюминий) и другие.

Сгорание веществ может происходить также за счёт кислорода, находящегося в составе других веществ, способных его отдавать. Такими веществами являются азотная кислота , бертолетова соль , селитры , , , и др. Смеси этих окислителей с горючим веществом взаимодействуют с большой скоростью, часто со взрывом .

Источниками воспламенения являются – открытый огонь (пламя), искры (электрические, металла) и нагретые поверхности. Источник воспламенения должен иметь температуру выше температуры самовоспламенения горючей смеси и обладать энергией выше минимальной энергии зажигания. К обычным источникам относятся пламя спички (700 С), электрическая искра (1000 С), поверхность лампы накаливания (до 350 С).

Все вещества и материалы в зависимости от агрегатного состояния различают на:

газы-вещества, давление насыщенных паров которых при температуре 25 °С и давлении 101,3 жидкости-вещества, давление насыщенных паров которых при температуре 25°С и давлении 101,3 кПа меньше 101,3 кПа. К жидкостям относят также твердые плавящиеся вещества, температура плавления или каплепадения которых меньше 50 °С;

твердые вещества и материалы-индивидуальные вещества и их смесевые композиции с температурой плавления или каплепадения больше 50 °С, а также вещества, не имеющие температуру плавления (например, древесина, ткани и т. п.);

пыли-диспергированные твердые вещества и материалы с размером частиц менее 850 мкм.

Вид агрегатного состояния участвующих в горении веществ определяет механизм горения, который подразделяют на три типа:

Гомогенное горение газов и парообразных горючих в среде газообразного окислителя;

Гетерогенное горение твердых и жидких горючих веществ в среде газообразного окислителя;

Взрывчатое горение.

| следующая лекция ==>

Горением называется химическая реакция окисления вещества, сопровождающаяся выделением тепла и излучением света.

Горение может возникнуть только при одновременном наличии трех условий: присутствии горючего вещества, окислителя и источника (импульса) зажигания . Горючее вещество и окислитель составляют горючую систему, а источник зажигания вызывает в ней реакцию окисления (горения).

Окислителем в процессах горения обычно является газообразный кислород, находящийся в воздухе, но горение может быть и в среде хлора, брома, озона и других окислителей.

Источником зажигания могут быть открытые или светящиеся источники – пламя, раскаленные поверхности, лучистая энергия, искры, а также скрытые (несветящиеся) – трение, удар, адиабатическое сжатие, экзотермическая реакция и т.д. Например, температура пламени спички составляет 750-860 0 С, тления сигареты – 700-750 0 С, пламени древесной лучины – 850-1000 0 С.

В некоторых случаях при горении конденсированных систем (твердых, жидких веществ или их смесей) пламя может и не возникать, т.е. происходит беспламенное горение , или тление .

Во всех случаях для горения характерны три типичных стадии: возникновение, распространение и погасание пламени.

В зависимости от агрегатного состояния горючего и окислителя различают три вида горения:

- гомогенное горение газов и газообразных горючих веществ в среде газообразного окислителя (такое горение может представлять собой взрыв или детонацию) – исходные вещества и продукты горения находятся в одинаковом агрегатном состоянии;

- гетерогенное горение жидких и твердых горючих веществ в среде газообразного окислителя – исходные вещества, например твердое или жидкое горючее и газообразный окислитель, находятся в разных агрегатных состояниях (горение угля, металлов, сжигание жидких топлив в топках, двигателях внутреннего сгорания и т.д.);

- горение взрывчатых веществ и порохов – сопровождается переходом вещества из конденсированного в газовое состояние.

Движение пламени по газовой смеси называется распространением пламени. В зависимости от скорости распространения пламени горение может быть:

- диффузионным (несколько метров в секунду) – все пожары представляют собой диффузионное горение;

- дефлаграционным или взрывным (десятки и сотни метров в секунду);

- детонационным (тысячи метров в секунду).

Пожарная профилактика при проектировании и строительстве предприятий. Огнестойкость и возгораемость строительных материалов и конструкций. Классификация производств по их пожаро- и взрывоопасности.

Взрыво- и пожароопасность производства определяется технологиями, в которых используются или могут образовываться вещества, материалы и смеси с определенными взрыво- и пожароопасными свойствами. Более высокую опасность представляют технологии, в которых используются вещества, способные образовывать взрывоопасные смеси с воздухом (горючие газы, легковоспламеняющиеся и горючие жидкости и т.п.).

При проектировании и строительстве производственных зданий необходимо учитывать пожарную опасность производства. Согласно Строительным нормам и правилам все производства в зависимости от применяемых или хранимых на них материалах и веществ по взрыво- и пожароопасности подразделяются на пять категорий: А, Б, В, Г и Д.

К категории Г относятся производства, в которых используются негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, обработка которых сопровождается выделением лучистого тепла, искр и пламени; горючие газы, жидкости и твердые вещества, которые сжигаются в качестве топлива.

Большинство предприятий связи относятся к категории В (пожароопасные). К этому типу относятся помещения производств предприятий связи, в которых имеются кабели с горючей обмоткой, оборудование с применением дерева и пластика, бумага, мешкотара, горючая пленка и т.п.

Категорирование производств по пожаровзрывоопасности имеет важное значение, так как в значительной степени позволяет определить требования к зданию, его конструкции и планировке, организации пожарной охраны и ее техническую оснащенность, требования к режиму и эксплуатации технологического оборудования.

Расположение зданий на местности;

Материалы и конструкции, используемые для строительства;

Этажность и планирование внутренних помещений;

Пути эвакуации людей;

Системы отопления и вентиляции.

Выбор местоположения зданий должен определяться с учетом рельефа местности и господствующих ветров. Объекты с повышенной пожарной опасностью располагают с подветренной стороны по отношению к объектам с меньшей пожарной опасностью. Складские помещения и пожароопасные цехи должны располагаться отдельно на определенном расстоянии от основного помещения, чтобы при их возгорании пожар не распространялся на основное здание. Возможно зонирование территории, которое предполагает группирование производственных объектов предприятия, родственных по функциональному назначению и признаку пожарной опасности в отдельные комплексы.

Материалы и конструкции, применяемые на строительстве, определяют степень огнестойкости зданий и сооружений, т.е. способность противостоять воздействию огня. Материалы и конструкции по возгораемости делятся на негорючие, трудногорючие и горючие. В зависимости от огнестойкости здания выбираются те либо другие материалы. Огнестойкость конструкций оценивается минимальным пределом огнестойкости и максимальными пределами распространения по ним огня. Пределом огнестойкости строительных конструкций называется время (в часах), определяемое от начала испытания на огнестостойкость до возникновения одного из следующих признаков:

Образование в конструкции сквозных трещин или отверстий, через которые проникают продукты горения или дым;

Повышенная температура на необогреваемой поверхности конструкции в среднем более чем на 140 0 С по сравнению с температурой до испытания;

Потеря конструкцией несущей способности.

Пределы огнестойкости основных строительных конструкций, выполненных на негорючих или трудногорючих материалов, изменяются от 0,5 до 2,5 часа.

Пределы распространения огня по строительным конструкциям определяют размеры повреждения конструкции в сантиметрах вследствие ее горения за пределами зоны нагрева – в контрольной зоне.

В проектах всех сооружений предприятий связи должны быть предусмотрены пути для быстрой и безопасной эвакуации людей и материальных ценностей в случае возникновения пожара. Эвакуационные пути должны обеспечивать эвакуацию всех людей, находящихся в помещениях предприятий связи в течение необходимого времени.

Требования пожарной безопасности должны соблюдаться при проектировании и эксплуатации систем отопления и вентиляции. На предприятиях связи применяются различные виды отопления: печное, электрическое, газовое воздушное, водяное и паровое. Наиболее пожароопасным является печное отопление, так как поверхности печей могут нагреваться до 400-500 0 С. Системы центрального отопления менее пожароопасны, чем системы местного отопления, так как температура поверхности нагревательных приборов колеблется от 85 до 110 0 С. Такие системы опасны тем, что по трубопроводам пожар может распространиться в другие помещения. В связи с этим не допускается прокладка трубопроводов отопления совместно с трубопроводами, по которым транспортируются горючие жидкости, пары или газы.

Вентиляционные системы зданий и сооружений проектируются с учетом степени пожарной опасности производства. Для производств категорий А.Б вентиляционные воздуховоды и ограждающие конструкции вентиляционных камер выполняются из негорючих материалов; для производств остальных категорий – из трудногорючих. Чаще всего воздуховоды располагают в стенах зданий, но допускается их прокладка и внутри помещений. Вентиляционные устройства следует регулярно проверять, очищать от пыли и отходов производства. Проверки фиксируются в специальном журнале. В случае возникновения пожара вентиляционная система должна быть отключена.

Для осуществления горения необходимо выполнение определенных условий, без которых горение невозможно. Первое условие состоит в том, что все процессы горения протекают исключительно в парогазовой фазе. Вторым условием осуществления горения является наличие трех компонент:

  • горючего газа или пара в определенной концентрации с определенной областью воспламенения;
  • окислителя, способного в определенных условиях вступать в химическую реакцию с реагирующим горючим газом;
  • источника воспламенения с достаточной энергией для поджигания и осуществления химической реакции воспламенения горючей смеси.

Характерной особенностью процессов горения является их большая скорость; она обусловлена протеканием реакций в пламени при высокой температуре и сильной зависимостью от температуры скоростей большинства химических процессов. В ряде случаев, когда реагирующая среда неоднородна, результирующая скорость превращения зависит в первую очередь от скорости доставки компонентов в зону реакции, а скорость собственно химического процесса становится несущественной. В такой ситуации решающее значение имеет физическое состояние реагирующих компонентов. В неоднородной среде, например на границе раздела фаз, горение протекает обычно гораздо медленнее, чем в однородной смеси.

Наиболее важным видом горения является горение газов. Большинство твердых и жидких продуктов, участвующих в горении, перед вступлением в основную реакцию либо испаряется, либо разлагается с частичным превращением в газо- образные продукты (газифицируется), которые затем реагируют в газовой фазе. Это происходит в результате прогрева соответствующего компонента (обычно горючего), обусловленного теплопередачей из зоны пламени. Лишь нелетучие горючие, например кокс, твердые продукты пиролиза каменного угля, некоторые металлы, сгорают собственно гетерогенно, на границе раздела фаз. Поэтому закономерности горения газов представляют наибольший интерес.

В повседневной практике принято связывать процесс горения с окислением кислородом различных горючих – угля, газообразных углеводородов, нефтепродуктов и др.

В горючих системах различают горючее и окислитель. В современной технике часто встречаются системы, в которых окислителем служат оксиды азота, галоиды, озон. В ряде случаев в горении участвует только один исходный продукт – эндотермическое соединение, способное к быстрому распаду, полимеризации или самоокислению (взрывчатые вещества и пороха) со значительным тепловыделением. Все же горючие системы, в которых окислителем служит кислород воздуха, наиболее распространены.

Для того чтобы могли протекать реакции горения, необходимо создать условия для воспламенения смеси топлива и окислителя.

Воспламенение может быть самопроизвольным и вынужденным. Под самовоспламенением понимается такое прогрессирующее самоускорение химической реакции, в результате которого медленно протекающий в начальной стадии процесс достигает больших скоростей и на завершающей стадии протекает мгновенно.

Вынужденное воспламенение (зажигание ) обусловлено внесением в реагирующую смесь источника теплоты, температура которого выше ее температуры воспламенения. Газо-воздушная смесь, не воспламеняющаяся при низкой температуре, может воспламениться при повышенной температуре, когда создаются благоприятные условия для возникновения активных центров в результате потери устойчивости сложных исходных молекул веществ.

Процесс воспламенения характеризуется тем, что имеются определенные границы (пределы), вне которых воспламенение не наступает ни при каких условиях. Известно, что газо-воздушные смеси воспламеняются только в том случае, когда содержание газа в воздухе находится в определенных (для каждого газа) пределах. При незначительном содержании газа количество теплоты, выделившейся при горении, недостаточно для доведения соседних слоев смеси до температуры воспламенения, т.е. для распространения пламени. То же наблюдается и при слишком большом содержании газа в газо-воздушной смеси. Недостаток кислорода воздуха, идущего на горение, приводит к понижению температурного уровня, в результате чего соседние слои смеси не нагреваются до температуры воспламенения. Этим двум случаям соответствуют нижний и верхний пределы воспламеняемости. Для метана нижний предел воспламеняемости в воздухе составляет 5,3%, верхний – 14,0%. Смесь метана с кислородом имеет нижний предел 5,1%, а верхний – 61%. Поэтому кроме перемешивания газа с воздухом в определенных пропорциях должны быть созданы начальные условия для воспламенения смеси.

Температура воспламенения газа зависит от ряда факторов, в том числе от содержания горючего газа в газо-воздушной смеси, давления, способа нагрева смеси и т.д., и поэтому не является однозначным параметром. Температура воспламенения метана в воздухе составляет от 545 до 850°С.

В практике используются оба способа воспламенения горючих смесей: самовоспламенение и зажигание. При самовоспламенении весь объем горючей газо-воздушной смеси постепенно путем подвода теплоты или повышения давления доводится до температуры воспламенения, после чего смесь воспламеняется уже без внешнего теплового воздействия. В технике широко применяется второй способ, именуемый зажиганием. При этом способе не требуется нагревать всю газо-воздушную смесь до температуры воспламенения, достаточно зажечь холодную смесь в одной точке объема каким-нибудь высокотемпературным источником (искра, накаленное тело, дежурное пламя и т.д.). В результате воспламенение передается па весь объем смеси самопроизвольно путем распространения пламени, происходящего не мгновенно, а с определенной пространственной скоростью. Эта скорость называется скоростью распространения пламени в газо-воздушной смеси и является важнейшей характеристикой, определяющей условия протекания и стабилизации горения.

Пределы воспламенения газо-воздушных смесей расширяются с повышением температуры, влияние же давления носит более сложный характер. Повышение давления выше атмосферного для некоторых смесей (например, водорода с воздухом) сужает пределы воспламенения, а для других (смесь метана с воздухом) – расширяет. При давлении ниже атмосферного верхний и нижний пределы сближаются, т.е. концентрационные пределы воспламенения сужаются.

Условиями осуществления вынужденного воспламенения являются наличие эффективного источника зажигания и способность образовавшегося фронта пламени самопроизвольно перемещаться (распространяться) в объеме газовоздушной смеси. Этот процесс носит название распространения пламени.

Различают два режима стационарного распространения пламени: в покоящейся или ламинарно движущейся среде и в турбулентном потоке. Первый носит название нормального распространения пламени, а второй – турбулентного.

Рассмотрим явления, происходящие в холодной горючей среде при ее локальном поджигании, которое заключается в быстром разогреве малого объема горючей среды до весьма высокой температуры. Полагаем, что она достаточна для того, чтобы в разогретой области практически мгновенно закончились возможные химические реакции и установилось состояние равновесия, поскольку скорость реакции сильно зависит от температуры. К такому локальному нагреванию обычно приводит газовый разряд либо пережигание тонкой короткой металлической нити током короткого замыкания.

Если реакция в разогретом газе экзотермическая, как это всегда имеет место при горении, то происходит разогрев соседнего слоя газа, обусловленный теплопроводностью. В этом слое в свою очередь произойдут химическое превращение и сопровождающее его выделение тепла Так возникает процесс послойной передачи импульса, инициирующего реакцию и выделение тепла по всему объему, заполненному горючей средой. Зона интенсивной реакции, или зона горения, перемещается в пространстве – происходит распространение пламени.

Реакция в пламени – самоускоряющаяся, обычно до практически полного ее завершения: тепловыделение и химический процесс взаимно ускоряют друг друга. Скорость перемещения пламени определяет интенсивность процесса горения и является его важнейшей характеристикой. Распространение пламени по однородной горючей среде, при котором зона самоускоряющейся реакции движется вследствие послойного разогрева по механизму теплопроводности от продуктов превращения, называют нормальным горением или дефлаграцией. Изложенные качественные представления о механизме горения были развиты одним из основоположников теории горения В. А. Михельсоном.

Зону изменения температуры и состава от начальных, соответствующих холодной горючей среде, до конечных, которые имеют продукты реакции, называют фронтом пламени. Опыт показывает, что эти величины изменяются во фронте пламени очень резко; ширина фронта пламени, границы которого, естественно, строго не фиксированы, при нормальном атмосферном давлении обычно не превышает десятых долей миллиметра. Поэтому во многих случаях можно рассматривать фронт пламени как поверхность, разделяющую холодную горючую среду и нагретые продукты сгорания. Такой прием облегчает установление ряда общих закономерностей, не связанных со спецификой реакций в пламени. При этом скорость реакции и скорость тепловыделения мы будем рассматривать не как объемные, а как поверхностные характеристики и будем относить их к единице поверхности фронта пламени.

Виды горения — это классификация физико-химического процесса в зависимости от характеристик его протекания.Деление на виды может производиться на основе анализа экзогенных и эндогенных характеристик.

Горение — это стремительно протекающая химическая реакция окисления, сопровождающаяся выделением тепла и свечением. Особенностью этого процесса является наличие цепной реакции распространения огня с ускорением и увеличением количества выделяемого тепла по мере вовлечения в процесс нового материала.

Для обеспечения горения необходимо наличие следующих факторов:

  • окислителя (чаще всего это кислород);
  • горючего вещества;
  • возгорания.

Эти факторы можно разделить на две части: условия и стартовый механизм. К первым относятся:

  • состояние среды;
  • состояние материала.

Главным фактором среды является наличие такого количества окислителя, который мог бы достаточно долго поддерживать ускоряющуюся цепную реакцию окисления.

Материал должен быть горючим, то есть способным к окислению. К состоянию материала как фактору горения относится и его структура. Пористый материал горит лучше, потому что в нем созданы все условия для лучшего доступа окислителя на всех стадиях процесса.

Стартовый механизм — это возгорание, после которого начинается цепная реакция распространения пламени. Может быть экзогенным и эндогенным. Обычно стремительное окисление начинается от поджога, осуществляемого человеком или природными стихиями.

Человек преднамеренно или нечаянно резко поднимает температуру материала в какой-либо его части, формируя управляемое или неуправляемое (пожар) распространение пламени. Природные стихии — это любой источник высокой температуры. Обычно это вулканы, метеориты, разряды молнии.

Эндогенные причины возгорания — это переход окисления из медленной стадии в быструю. Обычно сам по себе огонь появляется при помещении большого количества горючего материала в среду со значительным содержанием окислителя. Ярким примером является самовозгорание угля или торфа, извлеченных из бескислородной среды на воздух.

Существует еще теория самовозгорания органики при активном действии разлагающих микроорганизмов. Ее суть состоит в том, что бактерии или грибы, разлагая много органики, могут повысить температуру, после чего появляется пламя.

Однако у этой теории есть один изъян: при повышении температуры до определенного предела микроорганизмы перегреваются и прекращают свою деятельность, после чего температура органики снижается. Кроме того, бактерии и грибы могут активно жить только во влажной среде, в которой возникновение пламени невозможно.

Максимальное повышение температуры в разлагающейся куче травы достигает +60°С. После этого бактерии или погибают, или впадают в анабиоз. Через какое-то время на смену перегревшимся микроорганизмам придут другие, но уже в остывшем субстрате.

Виды горения по скорости

Горение — это по определению высокая скорость распространения реакции окисления. Однако есть показатели и побольше. С этой точки зрения виды горения делятся на следующие:

  • дефлаграционное — скорость около 10 м/с;
  • взрывное — около100 м/с;
  • детонационное — около 5000 м/с.

Дефлаграционное горение — это процесс, сопровождаемый передвижением пламени по всему материалу.

Взрыв — это процесс одновременного стремительного окисления всего горючего материала сразу. Обычно он происходит при возгорании очень мелкого и сильно горючего материала.

Детонация — это процесс, при котором распространяется ударная волна, инициирующая реакцию окисления. Последняя поддерживает движение первой за счет стремительно выделяющегося тепла. Ударная волна и экзотермические реакции развивают сверхзвуковую скорость, формируя детонацию.

Эту классификацию не стоит путать с видами пожаров. Понятие последнего произошло не совсем от физики и химии. Это оценка степени управляемости процесса. Горение дров в печке поддается контролю, поэтому это не пожар. В отличие от горения травы и деревьев в лесу.

Разновидности по признакам горючего материала

Конечной стадией горения является сгорание. Оно делится на полное и неполное. Первое — это образование продуктов, которые не являются больше горючим материалом. Обычно это вода, газообразные окислы и минерализованные твердые частицы (зола, пепел). Неполное сгорание происходит в условиях, препятствующих распространению огня. При этом образуются обугленные частички горючего материала.

Внешние условия и виды горения находятся в причинно-следственной взаимосвязи. Примером этого утверждения является деление видов по состоянию смесей.

  1. Бедные горючие смеси. Это связь какого-либо материала с окислителем, в которой воспламеняющихся компонентов слишком мало для продолжительного процесса окисления. Иными словами, это такая смесь, в которой окислителя много, а гореть нечему. Возможно и обратное: материал горючий и его много, а окислителя слишком мало.
  2. Богатые смеси. В них соотношение окислителя и горючего материала способствует возникновению устойчивого окисления с высокой температурой. В этой смеси есть чему гореть долго и с большим жаром. Главное, чтобы на этот процесс хватило окислителя.

В норме в воздухе содержится около 21% кислорода. Процесс горения стремительно меняет пропорции состава воздуха. Горение часто становится невозможным при снижении содержания кислорода до 14-18%. В этих неблагоприятных условиях гореть продолжают только некоторые вещества, например водород, этилен, ацетилен. При уменьшении количества кислорода менее 10% горение невозможно для всех смесей.

Процесс хоть и быстрый, но многофакторный. Это позволяет создавать большое количество таксонов и классификаций. Так что разнообразие видов горения зависит не только от среды и материала, но и от фантазии человека.