Об утверждении перечня организаций, эксплуатирующих особо радиационно опасные и ядерно опасные производства и объекты. НПО "Тайфун": государственный экологический мониторинг ядерно и радиационно опасных объектов атомной отрасли Перечень организаций, экспл

При работе реакторного и радиохимического производств образуются жидкие, газообразные и твердые радиоактивные отходы. О влиянии таких производств на окружающую среду было известно из опыта работы комбината в г. Челябинске-40 (ПО “Маяк”). Поэтому при проектировании и строительстве ГХК были предусмотрены меры, снижающие это воздействие. Для очистки газоаэрозольных выбросов и технологических вод, загрязненных радионуклидами, были построены специальные очистные сооружения. В 1967 году был введен в эксплуатацию полигон подземного захоронения “Северный”, в который стали удаляться жидкие радиоактивные отходы низкой и средней активности.

Благодаря хорошей работе газоочистных сооружений, влияние комбината на окружающую среду составляет менее одного процента. Выпадение радионуклидов на поверхность земли вблизи комбината меньше, чем естественная убыль за счет распада радионуклидов, накопившихся в почве от испытаний ядерного оружия в атмосфере и в первые годы эксплуатации комбината. Таким образом, идет процесс самоочищения территории.

Охлаждающая вода с двух проточных реакторов АД и АДЭ-1 сбрасывалась в реку Енисей и в штатном режиме эксплуатации, содержание радионуклидов не превышало установленных нормативов. Но в период, когда еще не было еще достаточного опыта, и в условиях гонки вооружений, как и у нас в реку Енисей, так и у американцев в Коламбию попало незначительное количество продуктов распада. С накоплением необходимого опыта и развитием технологий, ситуация вошла в норму. Прямоточные реакторы ГХК были остановлены в 1992 году. С тех пор произошло относительное самовосстановление поймы, и экологическая обстановка заметно улучшилась.

Третий реактор АДЭ-2 - энергетический, имеет замкнутую схему водоснабжения и практически не оказывает заметного влияния на окружающую среду. “Мокрое” хранилище отработавшего ядерного топлива завода РТ-2 также имеет систему замкнутого водоснабжения и его влияние на радиационную обстановку за пределами здания ничтожно мало.

За сбросами и выбросами радионуклидов постоянно велся и ведется дозиметрический контроль, для чего созданы соответствующие службы, как на заводах, так и на комбинате. Еще до пуска первого реактора была создана специальная служба - служба внешней дозиметрии. На базе этой службы организован Радиоэкологический центр (РЦ), в состав которого входит лаборатория радиоэкологического мониторинга.

Лаборатория осуществляет непрерывное наблюдение за уровнем выпадения радионуклидов на земную поверхность, за содержанием их в сбросах и газоаэрозольных выбросах реакторного и радиохимического заводов.

На территории, прилегающей к комбинату, лаборатория производит измерение мощности эквивалентной дозы гамма-излучения, контролирует содержание радионуклидов в почве и растительности, в воде и в донных отложениях реки Енисей. Контролируется содержание радионуклидов в молоке, мясе и овощах, выращенных в зоне влияния ГХК.

Совместно с научными и природоохранными организациями регионального и федерального уровня, регулярно проводятся экспедиции по изучению радиоэкологической обстановки в пойме Енисея, вплоть до Игарки. Многочисленные исследования свидетельствуют о том, что современная радиоэкологическая обстановка в районе воздействия ГХК вполне удовлетворительная и не требует в местах проживания и хозяйственной деятельности населения проведения экстренных реабилитационных мероприятий.

В настоящее время на комбинате внедрена автоматизированная система контроля радиационной обстановки (АСКРО). Датчики радиационного контроля установлены в населенных пунктах, расположенных в зоне влияния ГХК (с. Сухобузимское, с. Атаманово, с. Хлоптуново, с. Кононово и др.).

АСКРО осуществляет непрерывный контроль за мощностью эквивалентной дозы гамма-излучения, за концентрацией альфа-, бета- и гамма излучающих радионуклидов. Система позволяет своевременно обнаруживать превышения установленных пределов и и передавать данные измерений в центр сбора и обработки информации ГХК, а затем автоматически в Ситуационно-кризисный центр (СКЦ) Росатома, а так же в систему Интернет.

Таким образом, АСКРО позволяет непрерывно получать данные о радиационной обстановке, что дает возможность оперативно принимать меры в случае превышения установленных пределов.

ЯДЕРНАЯ И РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

На горно-химическом комбинате действуют следующие заводы, имеющие в своем составе ядерно- и радиационно-опасные производства:

Реакторный завод (РЗ),
- Радиохимический завод (РХЗ),
- Изотопно-химический завод (ИХЗ).

Основными документами, определяющими безопасность проведения работ с ядерно- и радиационно-опасными материалами являются Правила ядерной безопасности (ПБЯ), технологические регламенты и производственные инструкции.

Контроль за соблюдением этих правил осуществляют инспекторы Госгортехнадзора и специалисты Службы ядерной безопасности комбината.

Ядерная и радиационная безопасность обеспечивается современной технологией, использованием оборудования в ядерно-безопасном исполнении, исключающем возможность возникновения самоподдерживающейся цепной реакции (СЦР), выполнением технических мероприятий и высокой квалификацией специалистов, обслуживающих ядерно- и радиационно-опасные производства.

Для защиты персонала от ионизирующих излучений радиационно-опасное оборудование размещено за надежной биологической защитой в специальных боксах или каньонах и такие производства оснащены системами непрерывного контроля радиационной обстановки с выдачей световых и звуковых сигналов в случае повышения радиационного фона. Предусмотрено многократное дублирование энергообеспечения систем управления, а также аварийной защиты реактора и технологического процесса на РХЗ.

Для аварийного расхолаживания реактора в случае нарушения внешнего электроснабжения в составе ТЭЦ реакторного завода имеется автономный источник на базе авиационных двигателей.

При снижении напряжения или частоты во внешних сетях автономный источник запускается автоматически и обеспечивает электроснабжение ответственных потребителей, от него также запитывается аварийное освещение подземных объектов.

УЧЕТ И КОНТРОЛЬ ЯДЕРНЫХ МАТЕРИАЛОВ

Создание на ГХК системы учета и контроля ядерных материалов (ЯМ) является составной частью Государственной системы учета и контроля ЯМ.

ЯМ - это ядерно-опасные материалы, имеющие значительную стратегическую и материальную ценность, кроме того, это предмет международных обязательств по их нераспространению.

Система учета и контроля ядерных материалов на Горно-химическом комбинате создана с момента ввода в эксплуатацию основных подразделений предприятия. В настоящее время ведутся работы по ее совершенствованию на базе современных технических средств и современных требований.

Система учета и контроля ЯМ ГХК обеспечивает прежде всего решение следующих задач:

Непрерывный учет всех ЯМ, осуществляемый в процессе технологического цикла на всех стадиях переработки и хранения ядерных материалов;

Получение и представление необходимой информации о фактическом наличном количестве ЯМ и предотвращение несанкционированного их использования.

ГХК в рамках российско-американской программы совершенствования систем учета и контроля ЯМ тесно сотрудничает с национальными лабораториями США. Техническое сотрудничество с США позволяет совершенствовать систему Учета и контроля ядерных материалов.

ФИЗИЧЕСКАЯ ЗАЩИТА И ОХРАНА ЯДЕРНЫХ ОБЪЕКТОВ

Охране ядерно- и радиационно-опасных объектов, сохранению ядерных материалов, государственной тайны на ГХК всегда уделялось самое серьезное внимание.

С 1955 года основные объекты ГХК охраняют внутренние войска МВД. Особое внимание уделяется охране ядерных материалов при их транспортировке на комбинат и с комбината.

Для охраны используются современные компьютерные технологии, управляющее и телевизионное оборудование, современные средства сигнализации и связи. При необходимости на место действия оперативно прибывают силы быстрого реагирования.

В целях повышения надежности охраны ядерных объектов, совершенствования систем защиты и учета ядерных материалов, Горно-химический комбинат тесно сотрудничает с ФГУП “Элерон” и национальными лабораториями Министерства энергетики США.

НАУЧНО-ПРОИЗВОДСТВЕННЫЙ ЦЕНТР ГЕОМОНИТОРИНГА

Научно-производтсвенный центр Геомониторинга (НПЦГ), создан в 1997 году.

В работах специалистов НПЦГ формируется оценка устойчивости подземных сооружений комбината и техногенное влияние действующих производств на породы горного массива, в котором они расположены. В этом плане осуществляется контроль геодинамического микросдвижения блоков горных пород друг относительно друга путем создания геодезического полигона на поверхности и маркшейдерского полигона подземных сооружений ГХК.

Созданный в начале 90-х годов на полигоне «Северный» сейсмокомплекс позволяет оценить воздействие на объект региональных и сильных мировых сейсмособытий и одновременно регистрирует техногенную деятельность. Сейсмокомплекс позволил в короткие сроки провести оценку сейсмоопасности промзоны ГХК, микросейсморайонирование отдельных ее площадок и на основе комплексных геофизических и сейсмических работ подтвердить бальность сейсмокарт.

НПЦГ совместно с рядом ведущих научных организаций России с целью создания подземной исследовательской лаборатории по изучению возможностей глубинной геологической изоляции радиоактивных отходов осуществляет организацию комплексных геолого-геофизических исследований Нижне-Канского гранитоидного массива.

В 2008 году НПЦГ был реорганизован в службу главного геолога ГХК, руководителем службы был назначен Р.Р.Хафизов.

ПОЖАРНАЯ БЕЗОПАСНОСТЬ

К обеспечению противопожарной защиты объектов, расположенных в горных выработках, предъявляются самые высокие требования. Пожарная опасность этих объектов обусловлена следующими факторами:
-наличием кабельных трасс большой протяженности, проложенных в шахтах, полуэтажах и коллекторах;
-большим количеством горюче-смазочных материалов (ГСМ), особенно на атомной теплоэлектроцентрали (АТЭЦ);
-значительной площадью полов в производственных, административных и бытовых помещениях, покрытых горючим пластикатом.

Противопожарная защита объектов, расположенных в горных выработках, осуществляется военизированным пожарным отрядом, который находится непосредственно на территории объекта.

Для защиты объектов реакторного, радиохимического заводов и АТЭЦ используются стационарные системы и установки пожаротушения с различными тушащими средствами. Дополнительно в пожароопасные помещения и кабельные сооружения выведены сухотрубы для подачи по ним огнетушащего состава от автомобилей газового тушения пожарной охраны.

На АТЭЦ установлено 9 стационарных лафетных стволов для защиты от пожара подвесного потолка в турбинном зале.

Противопожарное водоснабжение подземных объектов представляет автономную, замкнутую систему (ППВ).

На ППВ 124 пожарных крана оборудованы заземлением для тушения электрооборудования под напряжением 6 кВ.

При отключении основных источников электроснабжения, один насос останется в работе, так как запитан от источника, независимого от внешней системы.

Таким образом пожарная безопасность подземных объектов обеспечивается несколькими независимыми друг от друга системами.

За все время эксплуатации этих объектов не было допущено серьезных возгораний в производственных помещениях.

МЕЖДУНАРОДНОЕ СОТРУДНИЧЕСТВО

Горно-химический комбинат проводит широкий спектр работ в рамках международного сотрудничества.

Основными направлениями международной деятельности являются:
- совершенствование системы учета, контроля и физической защиты ядерных материалов;
- создание в рамках инициативы “Атомные города” рабочих мест для работников, высвобождаемых в связи с сокращением оборонного заказа;
- сотрудничество с Министерством обороны США по взаимному контролю за остановленными реакторами и наработанным диоксидом плутония;
- проведение радиоэкологических исследований в пойме реки Енисей;
- создание замещающего источника теплоснабжения города Железногорска в рамках межправительственного соглашения России и США.

На ГХК накоплен большой опыт по обращению с отработавшим ядерным топливом и радиоактивными отходами. Специалисты комбината совместно с сотрудниками Российских и зарубежных организаций выполняют значительный объем научно-исследовательских работ в этой области деятельности.

СОТРУДНИЧЕСТВО В ОБЛАСТИ ОБРАЩЕНИЯ С РАДИОАКТИВНЫМИ ОТХОДАМИ

В период с 1996 по 2000 гг. были осуществлены первые шаги по обмену технологиями и поставками разработанного на ГХК оборудования для извлечения отходов из емкостей-хранилищ в Северозападную и Ок-Риджскую национальные лаборатории США.

В период с 2000 по 2003 гг. совместно с Сандийскими национальными лабораториями (SNL) США успешно реализован российско-американский проект под наименованием “Демонстрационный центр по извлечению отходов и выводу из эксплуатации емкостей- хранилищ ВАО”. В рамках этого проекта на ГХК были созданы 4 стенда для испытаний оборудования по извлечению пульп и технологий для переработки высокоактивных отходов.

На базе созданных стендов и узлов были продемонстрированы современные технологии обращения с отходами специалистам США с таких площадок как Ок-Ридж, Хэнфорд, Саванна-Ривер, Айдахо.

В результате плодотворного сотрудничества в этой области появились первые заказчики технологий и оборудования, был оценен рынок услуг в США по разработке (поставке) оборудования и технологий обращения с РАО и дезактивации.

Безопасное обращение с отработавшим ядерным топливом (ОЯТ) и радиоактивными отходами (РАО) в настоящее время в большинстве стран считается основной проблемой, ключевым элементом для устойчивого использования атомных электростанций.

Взаимный интерес как для российских, так и зарубежных специалистов заключается в уникальной возможности проведения экспериментальных работ в реальных условиях действующих подземных объектов ГХК для получения исходных данных при проектировании подземных атомных станций и хранилищ радиоактивных отходов.

Результаты этой работы по всем направлениям обеспечения безопасности впечатляют: за последние 20 лет на российских АЭС не зафиксировано ни одного нарушения безопасности, классифицируемого выше первого уровня («аномалия») по Международной шкале оценки ядерных событий INES (International Nuclear Events Scale).

Обеспечение ядерной и радиационной безопасности включает в себя несколько направлений. Первая - это обеспечение текущей безаварийной эксплуатации действующих объектов атомной промышленности и других ядерно и радиационно опасных объектов (ЯРОО). Достижению этой цели способствует не только правильное проектирование и лицензирование всех этапов жизненного цикла объектов, от проектирования до эксплуатации подобных объектов (а также задействованных в этом предприятий Госкорпорации «Росатом» и сторонних организаций), но и соблюдение всех регламентов и правил при эксплуатации. Лицензированием деятельности в области использования атомной энергетики, равно как и надзором за текущей деятельностью проектных, строительных и эксплуатирующих организаций занимается независимый государственный орган – Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) . Кроме того, организации ядерного топливного цикла получают заключения по ядерной безопасности и разрешения на ввод в эксплуатацию ЯРОО от Госкорпорации «Росатом»

Накопленный многолетний опыт, а также комплекс реализуемых на системной основе мероприятий позволяет предприятиям и организациям российской атомной отрасли добиваться высокой культуры безопасности при работе с ядерными материалами и радиоактивными отходами (РАО). К примеру, по критерию надежности работы АЭС Россия прочно занимает место в первой тройке стран с развитой ядерной энергетикой. Более того, в развитии технологий обращения с отработавшим ядерным топливом (ОЯТ) мы продвинулись существенно дальше многих из них.

Второе важное направление – это проблема ликвидации наследия советского «атомного проекта». Реабилитация загрязненных территорий (отвалов, хвостохранилищ, береговых баз Военно-морского флота), долговременное хранение реакторных отсеков и топлива списанных атомных подводных лодок – все это требует не только существенных финансовых затрат, но и применения новых, зачастую нестандартных подходов к решению накопившихся проблем. Для решения этих непростых проблем Правительство Российской Федерации в 2007 году утвердило Федеральную целевую программу «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года» с бюджетом 145,3 млрд рублей.

В ее рамках были профинансированы первоочередные меры по таким направлениям, как реконструкция «мокрого» и строительство нового «сухого» хранилища ОЯТ на ГХК, консервация озера Карачай и создание первой очереди системы канализации с отводом очищенных вод на ПО «Маяк» (г. Озерск, Челябинская область) и многие другие. Кроме того, финансовые ресурсы были направлены на создание Опытно-демонстрационного центра по переработке ОЯТ на основе инновационных технологий на ГХК; изучение возможности создания объекта по захоронению высокоактивных отходов в Нижнеканском массиве (Красноярский край); строительство комплекса цементирования низко- и среднеактивных отходов на ПО «Маяк» , а также создание на этом же предприятии установок по переработке низкоактивных отходов с высокой степенью очистки.

Эффективность выполнения ФЦП составила рекордные 108,5%. Было проведено более 300 мероприятий на 400 предприятиях, реабилитировано 279 га земель, выведено из эксплуатации 53 ядерных объекта. Достигнуть высоких показателей удалось в первую очередь за счет взвешенных управленческих решений, позволивших объединить усилия институтов Госкорпорации «Росатом», Академии наук РФ, Ростехнадзора и других участников ФЦП, а также создания центров компетенций. За восемь лет было разработано более 50 технологий в сфере завершающей стадии ядерного топливного цикла (ЯТЦ), в том числе 10 - по переработке ОЯТ. Разработаны типовые решения для всех категорий РАО, они апробированы и планомерно внедряются на объектах Росатома.

Перспективные планы Росатома в сфере обеспечения безопасности включают в себя дальнейшее совершенствование культуры безопасной эксплуатации ядерный объектов, продолжение работ по ликвидации наследия советского «атомного проекта», внедрение современных систем управления безопасностью.

Доклады об осуществлении лицензионного контроля деятельности организаций по использованию ядерных материалов и радиоактивных веществ при проведении работ по использованию атомной энергии в оборонных целях и об эффективности такого контроля

Цель: Ознакомление с радиационно-опасными объектами

Вопросы к теме

1.Защита населения и территорий при авариях на радиационно- опасных объектах с выбросом радиоактивных веществ в окружающую среду

2. Воздействие ионизирующих излучений на населе­ние

3. Воздействие ионизирующих излучений на окру­жающую среду

4. Радиационно (ядерно) опасные объекты и характер аварий на них

Защита населения и территорий при авариях на радиационно-опасных объектах с выбросом радиоактивных веществ в окружающую среду

За последние четыре десятилетия атомная энергети­ка и использование расщепляющихся материалов проч­но вошли в жизнь человечества. В настоящее время в мире работает около 450 ядерных реакторов. Атомная энергетика позволила существенно снизить «энергети­ческий голод» и оздоровить экологию в ряде стран. Так, во Франции более 75 % электроэнергии получают от АЭС и при этом количество углекислого газа, поступаю­щего в атмосферу, удалось сократить в 12 раз.

В условиях безаварийной работы АС атомная энергетика пока самое экономичное и экологически чистое производство энергии, и альтернативы ей в ближайшем будущем не предвидится. Радиоактив­ные вещества широко используются также и в других областях. Расширение сферы применения источни­ков радиоактивности ведет к увеличению риска воз­никновения аварий с выбросом радиоактивных ве­ществ и загрязнением окружающей среды. В резуль­тате таких аварий могут возникать обширные зоны радиоактивного загрязнения местности и происхо­дить облучение персонала радиационно (ядерно) опасных объектов (РОО и ЯОО) и населения, что бу­дет характеризовать создающуюся ситуацию как чрезвычайную. Подобные аварии будут носить ха­рактер радиационных и ядерных.

Общие сведения о радиоактивности и радиоактивном загрязнении окружающей среды

Под радиоактивностью понимается самопроизволь­ное превращение неустойчивых атомных ядер радиоак­тивных веществ в ядра других радиоактивных веществ, сопровождаемое ионизирующим излучением.

Под радиоактивными веществами понимаются ве­щества, содержащие изотопы (атомы одного и того же элемента, имеющие разное количество протонов и нейтронов, способных к самопроизвольному распаду).

Радиоактивность, наблюдающаяся у ядер элемен­тов в природных условиях, называется естественной, а у изотопов, полученных в результате ядерных реак­ций, - искусственной.

Явление радиоактивности используется в экономи­ке, атомной энергетике, медицине, военной сфере. В условиях «мирного атома» осуществляется управ­ляемая реакция деления ядер атомов, с помощью, кото­рой достигается нужный результат. В военной сфере (ядерное оружие) создаются усло­вия неуправляемой цепной реакции с выходом значи­тельного количества энергии различного характера в минимальное время (ядерный взрыв).

Под радиоактивным загрязнением окружающей среды понимается наличие в элементах биосферы ра­диоактивных веществ, ионизирующее излучение ко­торых создает радиационный фон, превышающий нормы радиационной безопасности населения.

Радиоактивное загрязнение окружающей среды различной степени может происходить при авариях на радиационно (ядерно) опасных объектах, в условиях проведения актов ядерного терроризма, а также в воен­ное время при применении ядерного оружия.

Ионизирующие излучения - квантовые (электро­магнитные) или корпускулярные (поток элементарных Частиц) излучения; под воздействием которых в среде из нейтральных атомов и молекул образуются положи­тельно или отрицательно заряженные частицы - ионы.

При искусственно вызванном распаде ядер вещест­ва (ядерный взрыв, работа ядерного реактора или ускорителя электронных частиц и т. д.) имеет место, также нейтронное излучение.

Число пар ионов, создаваемых ионизирующими излучениями в данной среде, отнесенное к единице расстояния, характеризует ее удельную ионизацию, а расстояние, пройденное от места их образования до места потери частицей избыточной энергии, - длину ее пробега. Эти характеристики зависят от энергии ча­стиц, их размеров, скорости, а также от среды (веще­ства), в которой они перемещаются.

Радиоактивность, наблюдающаяся у ядер элемен­тов, существующих в природных условиях, называет­ся естественной, а у изотопов, полученных в результа­те ядерных реакций, - искусственной.

Виды ионизирующих излучений. Радиоактивные вещества в ходе их распада испускают альфа-, бета-ча­стицы, гамма-излучения и нейтроны.

Альфа-частицы - это тяжелые положительно за­ряженные ядра гелия, обладающие высокой ионизи­рующей, но крайне слабой проникающей способно­стью. Длина их пробега в воздухе составляет 2,5 см, а в биологической ткани - 31 мкм.

Бета-частицы - электроны, имеющие меньшую, чем у альфа-частиц, ионизирующую, но большую проникаю­щую способность. Длина их пробега в воздухе более 15 см. Вместе с тем они в значительной степени задержи­ваются одеждой, обувью и кожным эпителием человека.

Гамма и рентгеновское излучение - электромагнит­ные излучения высокой энергии и сравнительно слабой ионизирующей способности. Они могут проходить сотни метров в воздухе, проникать через преграды из вещества с большой плотностью, в том числе и через тело человека.

Нейтронное излучение - поток электрически нейт­ральных частиц - нейтронов, способных вследствие это­го беспрепятственно проникать вглубь атомов облучае­мого вещества. Достигая ядер атомов, нейтроны либо по­глощаются ими, либо рассеиваются на них, теряя значительную часть энергии и скорость. Особенно боль­шое количество энергии (до 50 %) нейтроны теряют при столкновении с почти равными им по весу ядрами атомов элементов. Поэтому вещества, имеющие минимальное количество электронов вокруг ядра (вода, графит, азот), широко используются как для защиты от нейтронного из­лучения, так и для замедления движения нейтронов.

Нейтронный поток, так же как и гамма-излучение, обладает большой проникающей способностью через различные вещества и преграды, в том числе и через тело человека. При этом в результате облучения нейтронами атомных ядер химических элементов окружающей сре­ды возникает наведенная радиация, когда последние сами становятся источниками ионизирующих излучений.

К критериям ионизирующего излучения относятся: критерии источника ионизирующего излучения, крите­рии ионизирующего поля, создаваемого этим источником и характеризующего степень радиоактивного загрязне­ния окружающей среды, а также дозовые критерии, поз­воляющие определить возможную степень облучения человека, находящегося в ионизирующем поле.

В целях более системного восприятия критериев ионизирующих излучений они рассматриваются в ви­де таблицы.

Пояснения к таблице критериев

Активность и период полураспада радионуклидов связаны обратной зависимостью: чем меньше период полураспада радионуклида, тем выше его активность. Поглощенная доза (В) является основной дозимет­рической единицей, так как единицы измерения по­глощенной дозы и ее мощности используются в пока­заниях всех дозиметрических приборов.

Экспозиционная доза (X) - частный случай погло­щенной дозы по ионизации воздуха. Согласно ГОСТу РД 50 - 454 - 84 использование экспозиционной дозы и ее производных после 01.01.90 г. не рекомендуется. Однако в дозиметрических приборах выпуска до 1990 г., которые все еще широко используются на практике, основной дозиметрической величиной явля­лась экспозиционная доза и единицы ее измерения. Кроме того, единицы экспозиционной дозы продолжа­ют использоваться в публикациях СМИ. Поэтому в приведенной таблице экспозиционная доза включе­на в число рассматриваемых дозовых критериев.

Эквивалентная доза (Н ТК ) используется для опре­деления биологического воздействия на организм человека различных видов излучения, поскольку погло­щенная и экспозиционная дозы характеризуют лишь фотонные излучения, в то время как тяжесть наруше­ний в организме зависит от всех видов излучений и наибольший ущерб его состоянию наносят именно корпускулярные излучения (ос-частицы и нейтроны). Эквивалентная доза рассчитывается как произведе­ние поглощенной дозы (В) на взвешивающий коэффи­циент вида излучения (W R ), составляющий: для фото­нов и электронов любых энергий - 1; для α-частиц, ос­колков деления и тяжелых ядер - 20 и для нейтронов, в зависимости от их энергии, - 5 - 20.

Эффективная эквивалентная доза (Н э ф) учитывает различную чувствительность отдельных органов челове­ка к облучению. Рассчитывается как сумма произведе­ний доз, полученных каждым органом Т ), на соответст­вующий взвешивающий коэффициент(W Т ), учитываю­щий различную чувствительность органов к измерению. Взвешивающие коэффициенты (W Т ) составляют: для гонад - 0,20; для костного мозга, толстого кишеч­ника, легких и желудка - по 0,12; для мочевого пузы­ря, грудной железы, печени, пищевода и щитовидной железы - по 0,05; для кожи и клеток костных поверх­ностей - 0,01 и для остальных органов (суммарно) - 0,05. Сумма взвешивающих коэффициентов организ­ма составляет единицу (ΣW Т = 1).

Источники ионизирующих излучений. Все источни­ки ионизирующих излучений делятся на природные (ес­тественные) и техногенные, связанные с деятельностью человека (схема 1). К естественным источникам от­носятся космические источники и природные радионук­лиды, создающие природный радиационный фон, за счет которого человек получает за год дозу около 1,5 мЗв. Ис­точники ионизирующих излучений техногенного харак­тера можно условно разделить на технологические (даю­щие ионизирующие излучения как побочный продукт) и генерирующие (специально генерирующие ионизиру­ющее излучение). Излучения техногенного характера дают среднегодовую дозу около 1 мЗв. В целом среднее значение суммарной годовой дозы за счет излучения ее тественных и техногенных источников составляет 2 - 3 мЗв. Это так называемый естественный техногенмо измененный радиационный фон (радиационный фон).

Воздействие ионизирующих излучений на населе­ние.

Облучение, не превышающее значений нормально­го радиационного фона, не оказывает влияния на здоро­вье людей. Однако если облучение вызвано ионизирую­щим излучением, превышающим значения нормального фона, его воздействие может вызвать серьезные забо­левания и даже лучевую болезнь, вплоть до летального исхода.

Вредное воздействие ионизирующего излучения на человеческий организм возможно в результате как внешнего облучения, когда источник излучения нахо­дится вне организма, так и внутреннего, возникающе­го при попадании радиоактивных веществ внутрь ор­ганизма (с пищей, пылью или водой). При этом в ре­зультате внешнего облучения человек подвергается воздействию ионизирующего излучения только во время пребывания его вблизи от источника излучения. Внутреннее облучение действует длительно, до тех пор, пока радиоактивные вещества не будут выведены яз организма естественным путем или в результате ра­диоактивного распада.

Последствия облучения организма заключаются в разрыве молекулярных связей; в изменении химиче­ской структуры соединений, входящих в состав орга­низма; в образовании химически активных радикалов, обладающих высокой токсичностью; в нарушении структуры генного аппарата клетки. В результате изме­няется наследственный код и происходят мутагенные изменения, приводящие к возникновению и развитию злокачественных образований, к наследственным забо­леваниям, к врожденным порокам развития детей и по­явлению мутантов в последующих поколениях. Все они могут быть разделены на соматические, когда эффект облучения возникает у облученного, и наследственные, если он проявляется у потомства.

Характер действия ионизирующих излучений на организм зависит от величины поглощенной дозы, времени облучения, мощности дозы, площади или объема облучаемых тканей и органов и вида облуче­ния. Опасными являются любые дозы облучения, да­же на уровне фоновых. При малых дозах облучения биологический эффект носит стохастический (ве­роятностный) характер, причем вероятность его про­порциональна дозе, но не имеет дозового порога, а тя­жесть заболевания не зависит от нее. При относи­тельно больших дозах облучения биологический эффект носит нестохастический характер, когда име­ется наличие дозового порога, выше которого тя­жесть поражения уже зависит от величины дозы. Учитывая это обстоятельство, а также то, что вероят­ность заболевания при малых дозах облучения (в це­лом) крайне мала, при рассмотрении вопросов защи­ты населения имеется в виду в основном нестохасти­ческий характер облучения, когда отрицательные последствия облучения могут быть предотвращены установлением порога дозы.

Фактор времени имеет важнейшее значение для по­следствий облучения в связи с процессом восстановле­ния, протекающим в тканях и органах. При малой мощности дозы скорость развития поражений соизмерима со скоростью восстановительных процессов. С увели­чением мощности дозы процессы восстановления от­стают от разрушительных процессов, а это приводит к ускоренному развитию лучевой болезни.

По характеру распределения дозы во времени раз­личают острое и пролонгированное, одноразовое и фракционированное облучение. Под острым пони­мают кратковременное облучение при высокой мощ­ности дозы (децигрей в минуту и более), под пролон­гированным - относительно продолжительное облу­чение при низкой мощности дозы (доли грея в час и менее).

Как острое, так и пролонгированное облучение мо­жет быть однократным или фракционированным, ког­да между дозами облучения имеются интервалы. Кро­ме того, известно хроническое облучение, проходящее длительно и в малых дозах.

Так как альфа- и бета-излучения обладают незна­чительной проникающей способностью, они не мо­гут проходить через одежду и кожный покров к внут­ренним органам человека. Вместе с тем облучение бета-частицами открытых участков тела человека способно вызывать лучевые ожоги {«ядерный за­гар»), последствиями которых могут быть различные заболевания кожи, вплоть до онкологических. Кроме того, частицы, обладающие наибольшей энергией (в первую очередь бета-частицы), могут проникать через кожу непосредственно в кровоток. Однако наибольшую опасность корпускулярные излучения представляют при внутреннем облучении - попада­нии их источников внутрь организма (с пищей, во­дой и пылью). Обладая высокой биологической ак­тивностью (особенно α-частицы), альфа- и бета-излу­чения воздействуют непосредственно на внутренние органы и кровоток. Защита от их воздействия обес­печивается исключением попадания радиоактивных веществ на кожные покровы (защищают любые ви­ды одежды) и внутрь организма (контроль загрязне­ния воды и продуктов, применение СИЗОД).

Вследствие способности фотонных излучений и нейтронного потока проходить через преграды, одежду и тело человека, ионизируя все его структуры, они представляют одинаковую опасность и при внешнем, и при внутреннем облучении,

При фотонном облучении степень поражения орга­низма, кроме поглощенной дозы, в значительной мере зависит от площади облучаемой поверхности. Чем меньше ее размеры, тем меньше биологический эф­фект. Так, например, при облучении участка тела пло­щадью 6 см 2 с дозой 4 - 5 Зв заметного биологического эффекта не наблюдается, при такой же дозе на все те­ло- 50 % облученных может погибнуть.

Считается, что радиация не имеет ни вкуса, ни за­паха, однако это справедливо лишь при относительно небольших мощностях дозы. Те, кому приходилось ра­ботать при значительных уровнях радиации, заметили, что в этом случае имеются и органолептические ее воздействия. Исследования показали, что при мощно­сти дозы более 250 мЗв/ч на воздухе (20 мЗв/ч - в по­мещении) и по мере дальнейшего ее нарастания могут ощущаться: специфический запах (озон), учащение пульса и металлический привкус во рту, наступление эйфории, раздражение носоглотки и глаз и, наконец, рябь в глазах и чувство уплотнения воздуха, свиде­тельствующие об очень высоких уровнях радиации (500 - 1000 мЗв/ч и более).

Радиационные поражения человека с высокой сте­пенью вероятности могут возникать при облучениях, превышающих определенный предел. Так, при общем однократном облучении с дозой 1 Зв и более у каждо­го пострадавшего развивается острая лучевая болезнь (ОЛБ). Облучение с дозой 6- 10 Зв ведет к крайне тя­желой форме ОЛБ, когда без лечения возможен ле­тальный исход. Однако при современных методах лечения надежда на выздоровление есть и при облуче­нии более 6 Зв. Доза 10 Зв и более считается абсолют­но смертельной.

Облучение с эффективной дозой свыше 200 мЗв в течение года рассматривается как потенциально опасное. Лица, подвергшиеся такому облучению, должны немедленно выводиться из зоны облучения и направляться на медицинское обследование.

Воздействие ионизирующих излучений на окру­жающую среду.

Радиоактивное загрязнение среды приводит к выводу из хозяйственного оборота значи­тельных площадей на длительные сроки (пять перио­дов полураспада основных загрязнителей) и требует больших материальных затрат на проведение меро­приятий по защите населения, проживающего на дан­ной территории, и принятия мер по локализации и ликвидации загрязнения.

Ситуация приобретает чрезвычайный характер, когда в результате радиационных аварий радиоак­тивные вещества попадают в окружающую среду в большом количестве и загрязнению подвергаются обширные территории. Крупнейшими радиацион­ными авариями в России (в СССР) являлись: взрыв емкостей с жидкими радиоактивными отходами на предприятии «Маяк» в 1957 г., который привел к вы­бросу активностью 2 МКи, загрязнению территории площадью 20 тыс. км 2 и отселению 10,5 тыс. человек, а также катастрофа на ЧАЭС с выбросом активно­стью 70 МКи, приведшая к радиоактивному загряз­нению обширных территорий Белоруссии, Украины и России.

Радиоактивное загрязнение не всегда связано с аварийной ситуацией, оно может возникать и в без­аварийной обстановке: при нарушениях норм без­опасности на радиационно (ядерно) опасных объек­тах, при нарушении правил хранения и использования различных техногенных источников излучения, а также строительных норм и правил, касающихся огра­ничения ионизирующих излучений.

Радиационно (ядерно) опасные объекты и характер аварий на них.

К радиационно-опасным объектам (РОО) относятся объекты, на которых хранятся, перерабатываются, ис­пользуются или транспортируются радиоактивные ве­щества, при аварии на которых может произойти облу­чение ионизирующими излучениями людей, сельскохо­зяйственных животных и радиоактивное загрязнение окружающей среды.

В состав РОО по ряду критериев входят и так назы­ваемые ядерно-опасные объекты, представляющие наибольшую опасность при авариях. Ядерно-опасные объекты и их классификация.

Под ядерно-опасными объектами понимаются объек­ты, имеющие значительное количество ядерно-делящихся материалов (ЯДМ) в различных физических со­стояниях и формах, потенциальная опасность функ­ционирования которых заключается в возможности возникновения в аварийных ситуациях самоподдер­живающейся цепной ядерной реакции (СЦЯР). На­пример, возникновение СЦЯР с разной степенью ве­роятности возможно на всех объектах ядерно-топливного цикла (ЯТЦ), кроме горно-обогатительных комбинатов (рис. 1).

К ядерно-опасным объектам относится большинство объектов ядерного топливного цикла, в первую очередь АС, а также ядерные энергетические установки (реакторы) различного назначения; научно-исследовательские реакторы; объекты ядерно-оружейного комплекса и др.

Аварии на радиционно (ядерно) опасных объектах и радиоактивное загрязнение окружающей среды

Общие сведения о радиоактивности и радиоактивном загрязнении окружающей среды

Под радиоактивностью понимается самопроизвольное превращение неустойчивых атомных ядер радиоактивных веществ в ядра других радиоактивных веществ, сопровождаемое ионизирующим излучением.

Под радиоактивными веществами понимаются вещества, содержащие изотопы (атомы одного и того же элемента, имеющие разное количество протонов и нейтронов, способных к самопроизвольному распаду).

Радиоактивность, наблюдающаяся у ядер элементов в природных условиях, называется естественной, а у изотопов, полученных в результате ядерных реакций, - искусственной.

Явление радиоактивности используется в экономике, атомной энергетике, медицине, военной сфере. В условиях «мирного атома» осуществляется управляемая реакция деления ядер атомов, с помощью которой достигается нужный результат.

В военной сфере (ядерное оружие) создаются условия неуправляемой цепной реакции с выходом значительного количества энергии различного характера в минимальное время (ядерный взрыв).

Под радиоактивным загрязнением окружающей среды понимается наличие в элементах биосферы радиоактивных веществ, ионизирующее излучение которых создает радиационный фон, превышающий нормы радиационной безопасности населения.

Радиоактивное загрязнение окружающей среды различной степени может происходить при авариях на радиационно (ядерно) опасных объектах, в условиях проведения актов ядерного терроризма, а также в военное время при применении ядерного оружия.

Ионизирующие излучения - квантовые (электромагнитные) или корпускулярные (поток элементарных частиц) излучения, под воздействием которых в среде из нейтральных атомов и молекул образуются положительно или отрицательно заряженные частицы - ионы.

При искусственно вызванном распаде ядер вещества (ядерный взрыв, работа ядерного реактора или ускорителя электронных частиц и т.д.) имеет место также нейтронное излучение.

Число пар ионов, создаваемых ионизирующими излучениями в данной среде, отнесенное к единице расстояния, характеризует ее удельную ионизацию, а расстояние, пройденное от места их образования до места потери частицей избыточной энергии, - длину ее пробега. Эти характеристики зависят от энергии частиц, их размеров, скорости, а также от среды (вещества), в которой они перемещаются.

Виды ионизирующих излучений. Радиоактивные вещества в ходе их распада испускают альфа-, бета-частицы, гамма-излучения и нейтроны.

Альфа-частицы - это тяжелые, положительно заряженные ядра гелия, обладающие высокой ионизирующей, но крайне слабой проникающей способностью. Длина их пробега в воздухе составляет 2,5 см, а в биологической ткани - 31 мкм.

Бета-частицы - электроны, имеющие меньшую, чем у альфа- частиц, ионизирующую, но большую проникающую способность. Длина их пробега в воздухе более 15 см. Вместе с тем они в значительной степени задерживаются одеждой, обувью и кожным эпителием человека.

Гамма- и рентгеновское излучение - электромагнитные излучения высокой энергии и сравнительно слабой ионизирующей способности. Они могут проходить сотни метров в воздухе, проникать через преграды из вещества с большой плотностью, в том числе и через тело человека.

Нейтронное излучение - поток электрически нейтральных частиц - нейтронов, способных вследствие этого беспрепятственно проникать в глубь атомов облучаемого вещества. Достигая ядер атомов, нейтроны либо поглощаются ими, либо рассеиваются на них, теряя значительную часть энергии и скорость. Особенно большое количество энергии (до 50%) нейтроны теряют при столкновении с почти равными им по весу ядрами атомов элементов. Поэтому вещества, имеющие минимальное количество электронов вокруг ядра (вода, графит, азот), широко используются как для защиты от нейтронного излучения, так и для замедления движения нейтронов.

Нейтронный поток, также как и гамма-излучение, обладает большой проникающей способностью через различные вещества и преграды, в том числе и через тело человека. При этом в результате облучения нейтронами атомных ядер химических элементов окружающей среды возникает наведенная радиация, когда последние сами становятся источниками ионизирующих излучений.

К критериям ионизирующего излучения относятся: критерии источника ионизирующего излучения; критерии ионизирующего поля, создаваемого этим источником и характеризующего степень радиоактивного загрязнения окружающей среды, а также дозовые критерии, позволяющие определить возможную степень облучения человека, находящегося в ионизирующем поле.

В целях более системного восприятия критериев ионизирующих излучений они рассматриваются в виде таблицы (табл. 4.1.1).

Эквивалентная доза (Н Т R) используется для определения биологического воздействия на организм человека различных видов излучения, поскольку поглощенная и экспозиционная дозы характеризуют лишь фотонные излучения, в то время как тяжесть нарушений в организме зависит от всех видов излучений и наибольший ущерб его состоянию наносят именно корпускулярные излучения (а-час- тицы и нейтроны). Эквивалентная доза рассчитывается как произведение поглощенной дозы (D ) на взвешивающий коэффициент вида излучения (fV R), составляющий: для фотонов и электронов люТабл и ца 4.1.1

Критерии ионизирующего излучения

Наименование,

буквенный

Единицы измерения

Предельно

допустимые

показатели

Внесистемные

1. Критерии источника излучения

Вид излучения

Фотонное (гамма- и рентгеновское излучение); корпускулярное (а, р, нейтроны, протоны и т.д.)

Активность/)

Мера радиоактивности, определяемая числом радиоактивных распадов в единицу времени

Беккерель

  • 1 Бк = 1 расп/с

Соотношение 1 Ки = 3,7-10 10 Бк

Энергия излучения (энергетический спектр излучения) Е

Разность между суммарной энергией всех заряженных и незаряженных частиц, входящих в данный объем вещества, и суммарной энергией частиц, выходящих из этого объема (для определения наличия техногенных источников загрязнения на фоне естественных источников)

Электрон- вольт (эВ)

Период полураспада

Т иг

Время, в течение которого распадается половина данного количества радионуклидов (для определения продолжительности загрязнения среды):