Ядерно и радиационно опасных. Общие сведения о ядерно и радиационно опасных объектах. Физическая защита и охрана ядерных объектов


Под экологическим мониторингом ядерно и радиационно опасных объектов (ЯРОО) понимается система регулярных наблюдений за показателями загрязнения окружающей среды для своевременного выявления и прогноза нежелательных для человека и экосистем последствий. Он является важным средством обеспечения безопасности атомной отрасли и требует усиления межведомственного взаимодействия, которое уже демонстрируют Госкорпорация «Росатом» и Росгидромет.

Государственный радиационный мониторинг окружающей среды на территории РФ осуществляется Росгидрометом совместно с другими федеральными органами исполнительной власти. В соответствии с современными требованиями обеспечения безопасности населения и окружающей среды функционирование и развитие мониторинга производится на основе следующих принципов:

  • абсолютный приоритет защиты населения и окружающей среды как важнейших составляющих национальной безопасности РФ;
  • принцип предупреждения воздействия – система приоритетных действий, направленных на недопущение опасного экологического воздействия на человека и окружающую среду;
  • принцип готовности – постоянная готовность к предотвращению и ликвидации последствий чрезвычайных ситуаций;
  • принцип надежности – надежное функционирование как при нормальной радиационной обстановке, так и при возникновении чрезвычайных ситуаций;
  • принцип системности – системное и комплексное решение проблем обеспечения радиационно-экологической безопасности на локальном, региональном и глобальном уровнях на основе современных концепций анализа риска;
  • соблюдение международных обязательств Российский Федерации, гармонизация с принципами и нормами международного атомного права.


Сеть радиационного мониторинга

В состав сети государственного радиационного мониторинга Росгидромета входят пункты наблюдений за содержанием радиоактивных веществ в приземной атмосфере (53 пункта), атмосферных выпадениях (415), атмосферных осадках (33), поверхностных пресных водоемах и морских водах (73), а также 1307 станций и постов наблюдения для измерения мощности экспозиционной дозы (МЭД) γ-излучения.

При проведении маршрутных обследований в зонах наблюдений ЯРОО производится γ-съемка местности, отбор проб почвы, воды, донных отложений и растительности. Анализ проб объектов окружающей природной среды проводится в радиометрических лабораториях территориальных подразделений Росгидромета и в НПО «Тайфун».

Единство и сопоставимость данных мониторинга обеспечивается в рамках системы обеспечения и контроля качества наблюдений Росгидромета.

Научно-методическое руководство сетью осуществляет НПО «Тайфун».

Методы и средства мониторинга позволяют определять уровни радиоактивного загрязнения объектов природной среды на три-семь порядков ниже пределов, установленных действующими нормами радиационной безопасности, и контролировать динамику изменений техногенного радиационного фона, что обеспечивает надежную регистрацию случаев появления повышенного, по сравнению с фоновыми уровнями, загрязнения объектов природной среды . Данные многолетнего радиационного мониторинга убедительно свидетельствуют о том, что содержание радионуклидов в компонентах природной среды в зонах наблюдений ЯРОО при штатных условиях эксплуатации значительно ниже допустимых и на уровне фоновых значений, то есть с большим запасом удовлетворяет как радиационно-гигиеническим, так и экологическим критериям (см. таблицы 1-2 ).

Таблица 1. Среднегодовые объемные активности радионуклидов в приземном слое атмосферы в зонах наблюдений АЭС, 10 - 6 Бк/м 3

Балаковская

Белоярская

Билибинская

Ростовская

Калининская

Кольская

Ленинградская

Нововоронежская

Смоленская

1 «<» – минимально-детектируемая активность (МДА), которая зависит от эффективности регистрации используемого детектора и времени измерения;

2 «–» – сведения отсутствуют.

Таблица 2. Содержание 137 Cs в почве в районах АЭС, кБк/м 2

Зона наблюдений

Региональный фон

Балаковская

Белоярская

Ростовская

Калининская

Кольская

Ленинградская

Нововоронежская

Смоленская

Экологический мониторинг должен быть ориентирован на обеспечение социально приемлемого уровня риска при использовании ядерной энергии. Это предполагает, что риск от применения ядерных технологий не должен являться существенным добавлением к суммарному риску, которому подвергается человек и среда его обитания в процессе жизнедеятельности.

Для оценки интегрального воздействия на компоненты природной среды применяется методология анализа радиационного риска . Например, в качестве показателя интегрального воздействия ЯРОО на атмосферный воздух I а (R) может быть использована сумма отношений среднегодовой объемной активности техногенных радионуклидов Ai к допустимой (контрольному уровню) RA i при заданном риске R. При наличии в атмосферном воздухе нескольких радионуклидов должно выполняться условие I а (R)<1. В соответствии с нормами радиационной безопасности НРБ-99/2009 при выполнении указанного условия при пренебрежимо малом риске R (ниже 10 -6) не требуется никаких специальных мер по снижению выбросов ЯРОО и радиоактивности атмосферного воздуха. При невыполнении этого условия осуществляется управление риском с учетом принципа оптимизации.

Показатель интегрального радиационного воздействия на атмосферный воздух в зонах наблюдений различных ЯРОО изменяется в пределах от 3,8*10 -6 до 2,4*10 -1 , оставаясь существенно ниже 1 даже при оценках для пренебрежимо малого радиационного риска. Его наименьшие значения характерны для АЭС и исследовательских реакторов, максимальные зафиксированы в зоне наблюдений ПО «Маяк», что связано с прошлой деятельностью (таблица 3).

Таблица 3. Показатели интегрального воздействия на радиоактивность атмосферного воздуха в зоне наблюдений ЯРОО в течение года

Радиационный объект

Наиболее значимые радионуклиды

Интегральное воздействие

Нововоронежская АЭС

90 Sr, 137 Cs, 60 Co

Смоленская АЭС

60 Co, 90 Sr, 137 Cs, 54 Mn

Белоярская АЭС

ФГУП «ПО «Маяк»

239,240 Pu, 90 Sr

ФГУП «ГХК»

239,240 Pu, 90 Sr, 137 Cs

ФГУП «ГНЦ РФ – ФЭИ»

239,240 Pu, 90 Sr, 137 Cs

Сотрудничество по аварийному реагированию

ГК «Росатом» и Росгидромет тесно взаимодействуют в сферах защиты населения при чрезвычайных ситуациях на ЯРОО и разработки Единой государственной системы контроля радиационной обстановки (ЕГАСКРО) .

Для выполнения задач аварийного реагирования в системе Росгидромета действует Федеральный информационно аналитический центр (ФИАЦ) – одно из структурных подразделений НПО «Тайфун». На базе ФИАЦ организован Центр технической поддержки (ЦТП) кризисного центра концерна «Росэнергоатом». В случае чрезвычайной ситуации он обеспечивает кризисный центр концерна и Ситуационно-кризисный центр ГК «Росатом» оперативной информацией о гидрометеорологической обстановке в районе ЯРОО, дает прогноз трансграничного переноса радиоактивного загрязнения, участвует в подготовке рекомендаций по защите населения. Компьютерная система информационной поддержки принятия решений при радиационных авариях RECASS NT, разработанная и развиваемая в ФИАЦ Росгидромета, используется на всех российских АЭС. Для повышения готовности ЦТП НПО «Тайфун» участвует во всех противоаварийных учениях, проводимых ГК «Росатом».


Мобильная лаборатория радиационной разведки, созданная в НПО «Тайфун» для базовой территориальной подсистемы мониторинга Росгидромета в составе ЕГАСКРО, используется для контроля радиационной обстановки на ряде АЭС. Особенностью технической системы этой лаборатории является возможность не только проводить измерение МЭД и активности радионуклидов в элементах окружающей среды с выполнением координатной привязки измерений, но и определять высоту и нуклидный состав газоаэрозольного выброса в атмосферу, а также уточнять направление и скорость ветра на высоте выброса и параметры турбулентного рассеяния. Данные измерений лаборатории в режиме реального времени по протоколу TCP/IP передаются в кризисный центр для использования.

Для выполнения соглашений, принятых в рамках международной Конвенции о раннем предупреждении в случае ядерной аварии, под эгидой МАГАТЭ организована международная система взаимодействия при ядерных авариях. В систему входят региональные специализированные центры Всемирной метеорологической организации (ВМО) и аккредитованные центры заинтересованных государств, которые распространяют в своих странах информацию специализированных центров в соответствии национальным законодательством. Они оснащены информационными системами, позволяющими моделировать трансграничный перенос радиоактивных веществ.

ФИАЦ Росгидромета выполняет функции регионального специализированного метеорологического центра ВМО, зоной ответственности которого является Азия. Система RECASS NT, используемая в ФИАЦ для прогноза трансграничного переноса, предоставляет также информацию о возможных дозах внешнего и внутреннего облучения населения на различных территориях, попавших в зону аварии.

Для дальнейшего укрепления радиационной безопасности на территории России следует выделить несколько приоритетных задач.

Необходимо развитие систем комплексного радиоэкологического мониторинга и информационно-аналитических систем контроля и управления радиоэкологической безопасностью, приведение их в соответствие с требованиями экологического законодательства; поддержание, развитие и повышение технического уровня ЕГАСКРО.

Требуется разработка и актуализация государственных нормативно-правовых документов в области радиационного мониторинга, касающихся обеспечения экологической безопасности населения и объектов окружающей среды на территории РФ; внедрение международных стандартов в области мониторинга и охраны окружающей среды.

В частности, нужно создание нормативно-мето­дических документов по регулированию проведения мониторинга и прогнозирования радиационной обстановки:

  • на локальном, региональном и глобальном уровнях наблюдений;
  • на различных стадиях жизненного цикла ЯРОО;
  • при обращении с радиоактивными отходами и облученным ядерным топливом;
  • при реабилитации загрязненных радионуклидами территорий;
  • при контроле трансграничного переноса радионуклидов и радиоэкологическом мониторинге техногенных радионуклидов глобального распространения (3 Н, 14 С, 85 Kr).

Следует предусмотреть создание баз данных и сохранения фактографических знаний в области радиационного мониторинга и радиационной безопасности окружающей среды.

Литература

  1. Булгаков В.Г. Концепция развития и оптимизации системы государственного радиационного мониторинга Росгидромета / В.Г. Булгаков, С.М. Вакуловский, В.М. Ким и др. // Сборник докладов второй Всероссийской научно-практической конференции «Состояние и развитие единой государственной системы контроля радиационной обстановки на территории Российской Федерации». Обнинск, ГУ «НПО «Тайфун», 26-29 октября 2009 г. – С. 55-69.
  2. Крышев И.И. Экологическая безопасность ядерно-энергетического комплекса России / И.И. Крышев, Е.П. Рязанцев – М.: Издат., 2010.
  3. Росгидромет. ГУ «НПО Тайфун». Радиационная обстановка на территории России и сопредельных государств в 2005–2008 годы. Ежегодники. Обнинск, 2006–2009.
  4. Шершаков В.М. Особенности организационного управления в ЕГАСКРО / В.М. Шершаков // Сборник докладов второй Всероссийской научно-практической конференции «Состояние и развитие единой государственной системы контроля радиационной обстановки на территории Российской Федерации». Обнинск, ГУ «НПО «Тайфун», 26–29 октября 2009 г. – С. 35–54.

Авторы

В.М. Шершаков, д.т.н., В.Г. Булгаков, к.ф.-м.н., И.И. Крышев, д.ф.-м.н., В.С. Косых, к.т.н., А.И. Бурков, к.ф.-м.н., М.В. Прописнова
ГУ «НПО «Тайфун»

На радиационно опасных объектах (РОО) добываются, перерабатываются, хранятся, используются и транспортируются радиоактивные вещества. Радиоактивные вещества содержат изотопы, которые способны к самопроизвольному распаду. Радиоактивность - это самопроизвольный распад ядер атомов одних элементов с образованием ядер атомов других элементов и выделением атомной энергии в виде корпускулярного, фотонного и электромагнитного излучений. Распад ядер атомов в природных условиях называется естественной радиоактивностью, а у изотопов, полученных в результате ядерных реакций, - искусственной.

Атомная энергия используется в экономике, энергетике, медицине, военной сфере, научных исследованиях. Она опасна для человека и окружающей природной среды, потому что воздействие корпускулярного и квантового излучений способствует образованию ионов (положительно и отрицательно заряженных частиц) внутри организмов людей и животных, а также в растениях. Все это приводит к нарушению окислительно-восстановительного процесса, который обеспечивает развитие живой природы. Поэтому атомную энергию применительно к воздействию на окружающую среду называют ионизирующим излучением.

В состав радиационно опасных объектов входят и ядерно опасные объекты (ЯОО) - атомные станции, ядерные энергетические установки (реакторы) различного назначения, научно-исследовательские реакторы, объекты ядерно-оружейного комплекса и другие объекты, в составе которых находятся энергетические реакторы, загруженные радиоактивными веществами, и в них протекает цепная реакция.

Нарушение штатного режима работы объекта приводит к аварии. На атомных станциях аварии сопровождаются выбросом радиоактивных веществ (рис. 4.1, 4.2), что приводит к облучению в первую очередь персонала станции, а затем населения, проживающего вблизи атомной станции, и радиоактивному загрязнению окружающей среды.

Рис. 4.1. Взрыв атомного реактора

По характеру протекания аварийного процесса аварии могут быть радиационными и ядерными. Радиационная авария - это потеря управления источником ионизирующего излученияв результате нарушение правил безопасной эксплуатации ядерно-энергетической установки, оборудования или устройства, при котором произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, приводящей к облучению населения и загрязнению окружающей среды. Ядерная авария связана с нарушением правил эксплуатации или с повреждением ядерного реактора, ядерного взрывного устройства или других объектов, содержащих радиоактивные материалы.



Радиационные и ядерные аварии имеют следующие поражающие факторы: радиоактивное излучение (на самой станции и в окружающей среде); ударную волну (при наличии взрыва при аварии); тепловое излучение (при наличии пожаров при аварии). Наибольшую опасность для персонала станции и населения представляет радиоактивное излучение как ионизирующее излучение и проникающая радиация.

Рис. 4.2. Последствия взрыва ядерного реактора

Для оценки опасности аварий на АЭС используется Международная шкала ядерных и радиологических событий INES (англ. INES , International Nuclear Events Scale ). Она принята 1 июля 2008 года и оценивает все нештатные события по 8-бальной шкале (табл. 4.1, рис. 4.3).

За нулевой уровень («отклонение») приняты события, несущественные для безопасности. Шкала построена таким образом, что степень серьезности события возрастает с каждым уровнем шкалы примерно в 10 раз.

В рамках INES ядерные и радиационные аварии и инциденты классифицируются с учетом трех областей воздействия:

Население и окружающая среда (учитываются дозы облучения населения, находящегося близко от места события, а также обширный незапланированный выброс радиоактивного материала из установки);

Радиологические барьеры и контроль (учитывают события, которые не оказывают прямого воздействия на людей и окружающую среду, а именно высокие уровни излучения и распространение радиоактивных материалов в пределах установки);

Глубокоэшелонированная защита (охватывает события, которые не оказывают воздействия на людей и окружающую среду, однако комплекс мер, предусмотренный для предотвращения аварий, не был реализован так, как это задумывалось).

Таблица 4.1

Общее описание уровней INES

Наименование события Уровень события Содержание события, необходимость защиты населения
Крупная авария Крупный выброс радиоактивного материала с обширными последствиями для населения и окружающей среды. Необходимо проводить запланированные и длительные контрмеры.
Серьезная авария Значительный выброс радиоактивного материала, который потребует, вероятно, осуществления запланированных контрмер.
Авария с широкими последствиями Ограниченный выброс радиоактивного материала, который потребует, вероятно, проведения некоторых запланированных контрмер. Несколько смертельных случаев от облучения населения.
Авария с локальными последствиями Небольшой выброс радиоактивного материала. Мала вероятность применения запланированных контрмер, кроме мер контроля над пищевыми продуктами на местном уровне. По меньшей мере, один смертельный случай от облучения населения.
Серьезный инцидент Облучение персонала АЭС в 10 раз превышает годовой предел и не смертельно для человека.
Инцидент Облучение населения превышает в 10 раз установленные пределы. Облучение персонала АЭС превышает установленные годовые нормы.
Аномалия Отклонение Облучение населения превышает установленные годовые нормы. Несущественно для безопасности

Рис. 4.3. Основные положения международной шкалы
ядерных и радиологических событий

Аварийный взрыв атомного реактора любой конструкции по возможностям загрязнения окружающей среды превосходит наземный взрыв атомной бомбы. При этом прогнозирование масштабов радиоактивного загрязнения местности и атмосферы очень сложно ввиду отсутствия исходных параметров: характера аварии, метеоусловий в районе аварии и др.

Основными отличительными особенностями аварии на АЭС от наземного взрыва атомной бомбы в ходе боевых действий являются:

Радиоактивное загрязнение местности в этом случае будет иметь форму неправильного (рваного) сектора или круга, охватывающего значительную площадь (при аварии на ЧАЭС сектор загрязнения за 10 суток ветровых перемещений составил 270 градусов);

Мелкодисперсные аэрозоли, из которых образуется радиоактивное облако, обладают высокой проникающей способностью через фильтры защитных средств людей, а при оседании на поверхности проникают через микротрещины в краску и вглубь всех материалов, что затрудняет проведение мероприятий по защите населения и дезактивации территории, зданий, сооружений и техники;

Местность радиоактивными веществами загрязняется неравномерно, а пятнами с различными уровнями радиации, а на поверхности самих пятен, уровни радиации располагаются мозаично, что требует проведения регулярного радиационного контроля;

Естественный спад радиоактивности на местности после аварии на АЭС происходит более медленно и плавно, чем после взрыва атомной бомбы, поэтому территория после аварии атомного реактора будет загрязнена длительное время: несколько десятков, сотен лет.

Взрыв атомного реактора не сопровождается мощным световым излучением и ударной волной, как взрыв атомной бомбы.

Ядерная авария с разрушением реактора может быть представлена тремя фазами развития: ранней, средней, поздней.

Ранняя фаза начинается с момента начала аварии и продолжается до момента времени прекращения выброса из реактора продуктов распада в окружающую среду и полного оседания радиоактивного облака на поверхность земли (формирования радиационных полей). Продолжительность ранней фазы аварии может составлять несколько часов или несколько суток и зависит от уровня аварии, метеоусловий в районе аварии и эффективности мер локализации аварии. В Чернобыле ранняя фаза аварии продолжалась более 10 суток. В этот период обслуживающий персонал станции и население подвергаются внешнему облучению от радиоактивного облака и радиоактивного загрязнения местности, а также внутреннему облучению за счет ингаляционного поступления радионуклидов в организм человека, которое является наиболее опасным видом облучения

При некоторых авариях возможно наличие начальной стадии ранней фазы аварии , которое характеризуется возникновением аварийной ситуации в активной зоне реактора и продолжается до момента выброса радиоактивных веществ. В зависимости от типа реактора продолжительность начальной стадии составляет от нескольких часов до суток.

Средняя фаза развития аварии продолжается около года и начинается с завершением ранней фазы и оканчивается проведением основных экстренных мер по защите населения. Этот период характеризуется, в основном, внешним облучением людей от загрязненной радионуклидами территории, а при употреблении местных продуктов питания и воды - внутренним облучением.

Поздняя фаза продолжается до тех пор, пока полностью не исчезнет необходимость в проведении плановых мер защиты населения. Этот период характеризуется в основном внешним облучением людей, а внутреннее облучение возможно при недосмотре контролирующих органов за продуктами питания местного производства и питьевой водой.

Ядерную безопасность России регулируют федеральные законы. Среди них наиболее важными являются Федеральный закон от 21.11.1995, №170-ФЗ «Об использовании атомной энергии», Федеральный закон от 09.01.96. №з-ФЗ «О радиационной безопасности населения», Федеральный закон от 30.03.99 №52-ФЗ «О санитарно-эпидемиологическом благополучии населения»; закон РСФСР от 19.12.91 «Об охране окружающей природной среды», закон РФ 10.01.2002 N 7-ФЗ "Об охране окружающей среды" (поправкию.01.2014), закон 09.01.1995 №170-ФЗ "Об использовании атомной энергии", закон «Об административной ответственности за нарушение законодательства в области использования атомной энергии», 12.05.2000, закон РФ "О специальных экологических программах реабилитации радиационнозагрязненных участков территории", 10.07.2001, закон от 29.12.2010 N 442-ФЗ "О внесении изменений в Лесной кодекс РФ", закон 28.12.2013 N 406-ФЗ "О внесении изменений в федеральный закон "Об особо охраняемых природных территориях" и др.

Отдельные аспекты экологической и ядерной безопасности затрагивают такие законы, как закон от 21.02.1992 N 2395-1 «О недрах», закон от 04.05.1999 N 3-Ф3 "Об охране атмосферного воздуха", закон от 23.11.1995 N 174-Ф3 "От экологической экспертизе", закон от 27.12.2002 №184-ФЗ «О техническом регулировании»; закон от 08.08.2001 М128-ФЗ "О лицензировании отдельных видов деятельности", закон от 21.07.1997 "О промышленной безопасности опасных производственных объектов", закон от 21.12.1994 N 68-ФЗ "О защите населения и территории от чрезвычайных ситуаций природного и техногенного характера", «О санитарно- эпидемиологическом благополучии населения» №52-ФЗ от 30.03.99, и др.

Федеральный закон "Об использовании атомной энергии" (21.12.1995 N 170-ФЗ) определяет правовую основу и принципы регулирования отношений, возникающих при использовании атомной энергии. Он направлен на защиту здоровья и жизни людей, охрану окружающей среды, защит}" собственности при использовании атомной энергии, призван способствовать развитию атомной науки и техники, и укреплению международного режима безопасного использования атомной энергии.

Государственное регулирование безопасности при использовании атомной энергии предусматривает деятельность специально уполномоченных на то Президентом РФ Правительством РФ федеральных органов исполнительной власти, направленную на организацию разработки, утверждение и введение в действие норм и правил в области использования атомной энергии, выдачу разрешений на право ведения работ в области использования атомной энергии, осуществление надзора за безопасностью, проведение экспертизы и инспекции, контроля за разработкой и реализацией мероприятий по защите работников объектов использования атомной энергии, населения и охране окружающей среды в случае ядерной аварии.

Нарушение должностными лицами органов государственной власти и органов местного самоуправления, в области использования атомной энергии влечёт за собой дисциплинарную, административную или уголовную ответственность в соответствии с законодательством РФ.

Закон "О радиационной безопасности населения" (9.01.1996, № 3-ФЗ) утверждает принципы обеспечения радиационной безопасности:

  • - принцип нормирования - не превышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения;
  • - принцип обоснования - запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучением;
  • - принцип оптимизации - поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

Государственное нормирование в области обеспечения радиационной безопасности осуществляется путём установления санитарных правил, норм, гигиенических нормативов, правил радиационной безопасности, государственных стандартов, строительных норм и правил, правил охраны труда, распорядительных, инструктивных и методических документов по радиационной безопасности. В случае радиационных аварий допускается облучение, превышающее установленные допустимые пределы доз, в течение определенного промежутка времени и в пределах, определенных санитарными нормами и правилами.

Граждане РФ, иностранные граждане и лица без гражданства, проживающие на территории РФ, имеют право на радиационную безопасность. Это право обеспечивается за счёт проведения комплекса мероприятий по предотвращению радиационного воздействия на организм человека ионизирующего излучения выше установленных норм, правил и нормативов, выполнения гражданами и организациями, осуществляющими деятельность с использованием источников ионизирующего излучения, требований к обеспечению радиационной безопасности. Лица, виновные в невыполнении или в нарушении требований к обеспечению радиационной безопасности, несут административную, гражданско-правовую и уголовную ответственность в соответствии с законодательством РФ.

В федеральном законе от 10.01.2002 N 7-ФЗ "Об охране окружающей среды" говорится: каждый имеет право на благоприятную окружающую среду, каждый обязан сохранять природу и окружающую среду, бережно относиться к природным богатствам, которые являются основой устойчивого развития, жизни и деятельности народов, проживающих на территории РФ. Этот закон определяет правовые основы государственной политики в области охраны окружающей среды, обеспечивающие решение социально-экономических задач, сохранение благоприятной окружающей среды, биологического разнообразия и природных ресурсов в целях удовлетворения потребностей нынешнего и будущих поколений, укрепления правопорядка в области охраны окружающей среды и обеспечения экологической безопасности. Закон определяет порядок проведения экспертизы безопасности объектов использования атомной энергии.

Ядерная безопасность регулируется также Указами и распоряжениями Правительства РФ. Например, «Об уголовной ответственности за незаконные действия с радиоактивными материалами» (№8559-X/ 3-03- 88г.), «Об административной ответственности организации за нарушение законодательства в области использования атомной энергии», «Положение о Федеральном надзоре России по ядерной и радиационной безопасности», "Положение об экспорте и импорте ядерных материалов", 15.12.2000.

В России за радиационную безопасность ответственны следующие организации.

Росатом (Россия) - Федеральное агентство по атомной энергии образовано в 2004 г. Является уполномоченным федеральным органом исполнительной власти, осуществляющим функции по проведению государственной политики, нормативно-правовому регулированию, оказанию государственных услуг и управлению государственным имуществом в сфере использования атомной энергии, развития и безопасного функционирования атомной энергетики, ядерного оружейного комплекса, ЯТЦ, атомной науки и техники, ядерной и радиационной безопасности, нераспространения ядерных материалов и технологий.

Ростехнадзор - Федеральная служба России по экологическому, технологическому и атомному надзору. Является регулирующим органом по Конвенции о ядерной безопасности и компетентным органом РФ по Базельской конвенции о контроле за трансграничной перевозкой опасных отходов и их удалением; осуществляет правовое регулирование взимания платы за негативное воздействие на окружающую среду.

Минздрав РФ - Министерство здравоохранения РФ. Включает Департамент государственного санитарно-эпидемиологического надзора. Санитарно-эпидемиологическая служба - система государственных учреждений России, осуществляющих государственный санитарный надзор, а также разработку и проведение санитарно-профилактических и противоэпидемических мероприятий.

В 1999 Минздрав РФ издал НОРМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ (НРБ-99), СП 2.6.1.758-99-

НРБ - нормы радиационной безопасности, документ, регламентирующий в РФ допустимые уровни воздействия ионизирующих излучений на живой организм с учётом облучения человека извне и изнутри. В основу НРБ положены предельно допустимые дозы (ПДД) для различных критических органов и тела в целом.

Организация работ с радиоактивными веществами, обеспечивающая максимально возможную безопасность, регламентируется «Санитарными правилами работы с радиоактивными веществами и ионизирующими излучениями». Эти правила обязательны для лабораторий, предприятий и организаций, использующих (или хранящих) радиоактивные изотопы и источники ионизирующих излучений, а также для проектных и строительных организаций, занимающихся постройкой объектов, предназначенных для работы с радиоактивными веществами.

ОСПОРБ-99 - основные санитарные правила обеспечения радиационной безопасности РФ, устанавливающие требования по защите людей от вредного радиационного воздействия при всех условиях облучения от источников ионизирующего излучения, на которые распространяется действие НРБ-99.

Сущность и основные понятия радиационной безопасности

радиационная безопасность населения - состояние защищенности от вредного для здоровья воздействия, ионизирующего излучения;

естественный радиационный фон - доза излучения, создаваемая космическим излучением и излучением природных радионуклидов, естественно распределенных в элементах биосферы, пищевых продуктах и организме человека;

техногенно измененный радиационный фон - естественный радиационный фон, измененный в результате деятельности человека;

санитарно-защитная зона - территория вокруг источника ионизирующего излучения, на которой уровень облучения людей в условиях нормальной эксплуатации данного источника может превысить установленный предел дозы облучения для населения. В санитарно-защитной зоне запрещается постоянное и временное проживание лицей, вводится режим ограничения хозяйственной деятельности и проводится радиационный контроль;

зона наблюдения - территория за пределами санитарно-защитной зоны, на которой проводится радиационный контроль;

радиационная авария - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами, которые могли привести к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

Основным показателем степени потенциальной опасности таких объектов, при прочих равных условиях, является общее количество радиоактивных веществ, находящихся на каждом из них.

Под ядерно-опасными объектами понимаются объекты, имеющие значительные количества ядерных делящихся материалов (ЯДМ) в различных физических состояниях и формах.

К ядерно-опасным объектам, относятся: объекты ядерного топливного цикла - атомные станции различного назначения, предприятия по регенерации отработанного топлива и временному хранению радиоактивных отходов; научно-исследовательские организации, имеющие исследовательские реакторы или ускорители частиц; морские суда с ядерными энергетическими установками, а также хранилища ядерных боеприпасов и полигоны, где проводятся испытания ядерных зарядов.

Из перечисленных объектов наибольшим количеством радиоактивности обладают работающие ядерные реакторы. Чем больше мощность реактора, тем большее количество продуктов деления накапливается в нем.

К радиационно-опасным объектам , относятся предприятия, использующие радиоактивные вещества в небольших количествах и изделия на их основе, в том числе, не представляющие ядерной опасности.

Атомные станции как объекты повышенной радиационной опасности . Атомная энергетика России дает в целом около 11% электроэнергии от ее общего производства. Она включает 9 атомных станций с 29 реакторами.


В процессе работы атомных станций, по мере «выгорания» тепловыделяющих элементов (твэлов), в реакторах накапливается большое количество радиоактивных продуктов деления с различными периодами полураспада: от короткоживущих - несколько часов или суток (аргон-41, йод-131), до долгоживущих - тысячи и миллионы лет (плутоний-239, уран-235).

Радиоактивные продукты распада, содержащиеся в активной зоне реактора, являются основными источниками ионизирующих излучений. Вне активной зоны реактора источниками излучения на АС являются главным образом трубопроводы и оборудование контура теплоносителя.

Для обеспечения надежной работы АС и радиационной безопасности персонала и населения проектами предусматриваются соответствующие системы безопасности.

Под системами безопасности АС в общем случае понимают системы, предназначенные для предупреждения аварий и ограничения их последствий. Различают защитные, локализующие, управляющие и обеспечивающие системы безопасности.

Защитные системы безопасности предназначены для предотвращения (ограничения) повреждений ядерного топлива, оболочек тепловыделяющих элементов, контура теплоносителя и аварий, вызванных нарушением контроля и управления цепной ядерной реакцией деления, а также нарушений теплоотвода из реактора.

Локализующие системы безопасности предназначены для предотвращения или ограничения распространения выделяющихся при авариях радиоактивных веществ внутри станций и выхода их в окружающую среду.

Управляющие системы безопасности предназначены для автоматического включения защитных и локализующих систем безопасности, контроля и управления ими в процессе выполнения.

Обеспечивающие системы служат для снабжения всех систем безопасности энергией и создания необходимых условий для их функционирования. Важнейшими представителями систем безопасности являются дизель-генераторы, которые автоматически запускаются при обесточивании АС в аварийной ситуации.

По техническим причинам возникновения, аварии подразделяются на проектные и запроектные. Авария, исходная причина которой устанавливается действующей нормативно-технической документацией, а обеспечение безопасности при этом предусмотрено проектом АС, называется проектной.

Запроектной называют аварию, развитие которой отклоняется от протекания возможных проектных аварий и обеспечение безопасности при которой не предусмотрено проектом. Их локализация осуществляется проведением различных организационных и инженерно-технических мероприятий, не связанных с системами безопасности на АС.

Таблица I

Международная шкала оценки событий на атомных станциях

Аварии на радиционно (ядерно) опасных объектах и радиоактивное загрязнение окружающей среды

Общие сведения о радиоактивности и радиоактивном загрязнении окружающей среды

Под радиоактивностью понимается самопроизвольное превращение неустойчивых атомных ядер радиоактивных веществ в ядра других радиоактивных веществ, сопровождаемое ионизирующим излучением.

Под радиоактивными веществами понимаются вещества, содержащие изотопы (атомы одного и того же элемента, имеющие разное количество протонов и нейтронов, способных к самопроизвольному распаду).

Радиоактивность, наблюдающаяся у ядер элементов в природных условиях, называется естественной, а у изотопов, полученных в результате ядерных реакций, - искусственной.

Явление радиоактивности используется в экономике, атомной энергетике, медицине, военной сфере. В условиях «мирного атома» осуществляется управляемая реакция деления ядер атомов, с помощью которой достигается нужный результат.

В военной сфере (ядерное оружие) создаются условия неуправляемой цепной реакции с выходом значительного количества энергии различного характера в минимальное время (ядерный взрыв).

Под радиоактивным загрязнением окружающей среды понимается наличие в элементах биосферы радиоактивных веществ, ионизирующее излучение которых создает радиационный фон, превышающий нормы радиационной безопасности населения.

Радиоактивное загрязнение окружающей среды различной степени может происходить при авариях на радиационно (ядерно) опасных объектах, в условиях проведения актов ядерного терроризма, а также в военное время при применении ядерного оружия.

Ионизирующие излучения - квантовые (электромагнитные) или корпускулярные (поток элементарных частиц) излучения, под воздействием которых в среде из нейтральных атомов и молекул образуются положительно или отрицательно заряженные частицы - ионы.

При искусственно вызванном распаде ядер вещества (ядерный взрыв, работа ядерного реактора или ускорителя электронных частиц и т.д.) имеет место также нейтронное излучение.

Число пар ионов, создаваемых ионизирующими излучениями в данной среде, отнесенное к единице расстояния, характеризует ее удельную ионизацию, а расстояние, пройденное от места их образования до места потери частицей избыточной энергии, - длину ее пробега. Эти характеристики зависят от энергии частиц, их размеров, скорости, а также от среды (вещества), в которой они перемещаются.

Виды ионизирующих излучений. Радиоактивные вещества в ходе их распада испускают альфа-, бета-частицы, гамма-излучения и нейтроны.

Альфа-частицы - это тяжелые, положительно заряженные ядра гелия, обладающие высокой ионизирующей, но крайне слабой проникающей способностью. Длина их пробега в воздухе составляет 2,5 см, а в биологической ткани - 31 мкм.

Бета-частицы - электроны, имеющие меньшую, чем у альфа- частиц, ионизирующую, но большую проникающую способность. Длина их пробега в воздухе более 15 см. Вместе с тем они в значительной степени задерживаются одеждой, обувью и кожным эпителием человека.

Гамма- и рентгеновское излучение - электромагнитные излучения высокой энергии и сравнительно слабой ионизирующей способности. Они могут проходить сотни метров в воздухе, проникать через преграды из вещества с большой плотностью, в том числе и через тело человека.

Нейтронное излучение - поток электрически нейтральных частиц - нейтронов, способных вследствие этого беспрепятственно проникать в глубь атомов облучаемого вещества. Достигая ядер атомов, нейтроны либо поглощаются ими, либо рассеиваются на них, теряя значительную часть энергии и скорость. Особенно большое количество энергии (до 50%) нейтроны теряют при столкновении с почти равными им по весу ядрами атомов элементов. Поэтому вещества, имеющие минимальное количество электронов вокруг ядра (вода, графит, азот), широко используются как для защиты от нейтронного излучения, так и для замедления движения нейтронов.

Нейтронный поток, также как и гамма-излучение, обладает большой проникающей способностью через различные вещества и преграды, в том числе и через тело человека. При этом в результате облучения нейтронами атомных ядер химических элементов окружающей среды возникает наведенная радиация, когда последние сами становятся источниками ионизирующих излучений.

К критериям ионизирующего излучения относятся: критерии источника ионизирующего излучения; критерии ионизирующего поля, создаваемого этим источником и характеризующего степень радиоактивного загрязнения окружающей среды, а также дозовые критерии, позволяющие определить возможную степень облучения человека, находящегося в ионизирующем поле.

В целях более системного восприятия критериев ионизирующих излучений они рассматриваются в виде таблицы (табл. 4.1.1).

Эквивалентная доза (Н Т R) используется для определения биологического воздействия на организм человека различных видов излучения, поскольку поглощенная и экспозиционная дозы характеризуют лишь фотонные излучения, в то время как тяжесть нарушений в организме зависит от всех видов излучений и наибольший ущерб его состоянию наносят именно корпускулярные излучения (а-час- тицы и нейтроны). Эквивалентная доза рассчитывается как произведение поглощенной дозы (D ) на взвешивающий коэффициент вида излучения (fV R), составляющий: для фотонов и электронов люТабл и ца 4.1.1

Критерии ионизирующего излучения

Наименование,

буквенный

Единицы измерения

Предельно

допустимые

показатели

Внесистемные

1. Критерии источника излучения

Вид излучения

Фотонное (гамма- и рентгеновское излучение); корпускулярное (а, р, нейтроны, протоны и т.д.)

Активность/)

Мера радиоактивности, определяемая числом радиоактивных распадов в единицу времени

Беккерель

  • 1 Бк = 1 расп/с

Соотношение 1 Ки = 3,7-10 10 Бк

Энергия излучения (энергетический спектр излучения) Е

Разность между суммарной энергией всех заряженных и незаряженных частиц, входящих в данный объем вещества, и суммарной энергией частиц, выходящих из этого объема (для определения наличия техногенных источников загрязнения на фоне естественных источников)

Электрон- вольт (эВ)

Период полураспада

Т иг

Время, в течение которого распадается половина данного количества радионуклидов (для определения продолжительности загрязнения среды):